Neutrinos and Cosmos

Hitoshi Murayama (Berkeley) Texas Conference at Stanford

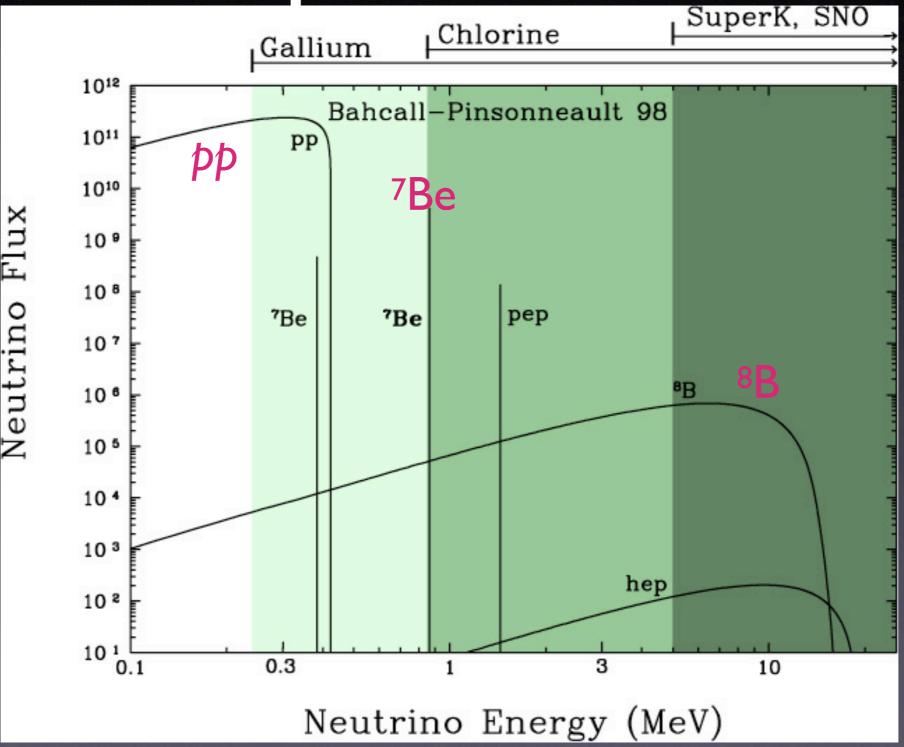
Outline

- A Little Historical Perspective
- Interpretation of Data & Seven Questions
- Matter Anti-Matter Asymmetry
- Conclusions

A Little Historical Perspective

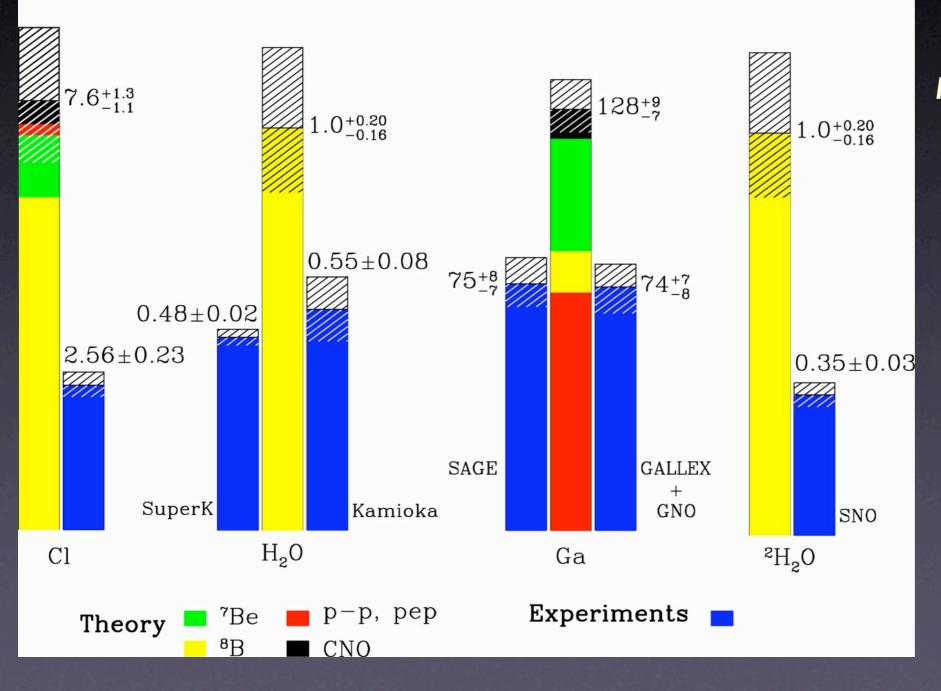
Rare Effects from High-Energies $L = L_{SM} + \frac{1}{\Lambda}L_5 + \frac{1}{\Lambda^2}L_6 + \cdots$ • Effects of physics beyond the SM as effective operators $L_5 = (LH)(LH) \to \frac{1}{\Lambda}(L\langle H \rangle)(L\langle H \rangle) = m_{\nu}\nu\nu$ Can be classified systematically (Weinberg) $L_6 = QQQL, \bar{L}\sigma^{\mu\nu}W_{\mu\nu}He,$ $W^{\mu}_{\nu}W^{\nu}_{\lambda}B^{\lambda}_{\mu}, (H^{\dagger}D_{\mu}H)(H^{\dagger}D^{\mu}H), \cdots$

Unique Role of Neutrino Mass


- Lowest order effect of physics at short distances
 Tiny effect (m_v/E_v)²~(eV/GeV)²=10⁻¹⁸!
- Interferometry (i.e., Michaelson-Morley)!
 - Need coherent source
 - Need interference (i.e., large mixing angles)
 - Need long baseline

Nature was kind to provide all of them!

 "neutrino interferometry" (a.k.a. neutrino oscillation) a unique tool to study physics at very high scales

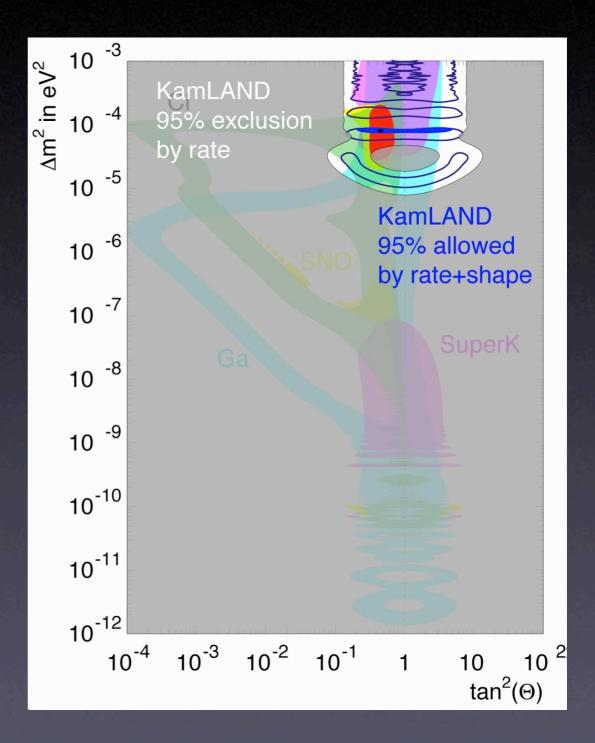

Solar Neutrino

Spectrum

We don't get enough

Total Rates: Standard Model vs. Experiment Bahcall-Pinsonneault 2000

Can we get three numbers correctly with only two parameters? $(\Delta m^2, \theta)$

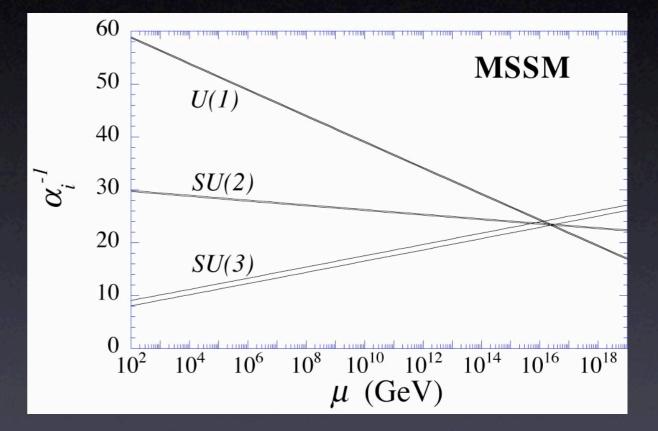

Year of Neutrino: 2002

March 2002

April 2002 with SNO

Dec 2002 with KamLAND

June 2004 with KamLAND



Solar Neutrino Problem Finally Solved After 35 Years!

What we learned • Atmospheric V_{u} s are lost. P=4.2 10⁻²⁶ (SK) • converted most likely to v_{τ} (>99%CL) • Solar v_e is converted to either v_u or v_{τ} $(>5\sigma)$ (SNO) • Reactor anti- V_{a} disappear and reappear (99.6%CL) (KamLAND) Only LMA solution left for solar neutrinos • Tiny neutrino mass: the first evidence for incompleteness of Minimal Standard Model

Grand Unification

- electromagnetic, weak, and strong forces have very different strengths
- But their strengths become the same at 10¹⁶ GeV if supersymmetry
- A natural candidate energy scale $\Lambda \sim 10^{16} \text{GeV}$ $\Rightarrow m_{\nu} \sim 0.003 \text{eV}$ $m_{\nu} \sim (\Delta m_{atm}^2)^{1/2} \sim 0.05 \text{eV}$ $m_{\nu} \sim (\Delta m_{sol}^2)^{1/2} \sim 0.009 \text{eV}$

Neutrino mass may be probing unification!

 $L_5 = (LH)(LH) \to \frac{1}{\Lambda}(L\langle H \rangle)(L\langle H \rangle) = m_{\nu}\nu\nu$

Typical Theorists' View ca. 1990

- Solar neutrino solution must be small angle MSW solution because it's cute Wrong!
 Natural scale for Δm²₂₃ ~ 10–100 eV² because it is cosmologically interesting Wrong!
- Angle θ_{23} must be ~ V_{cb} =0.04
- Atmospheric neutrino anomaly must go away because it needs a large angle
 Wrong!

Wrong!

Surprises

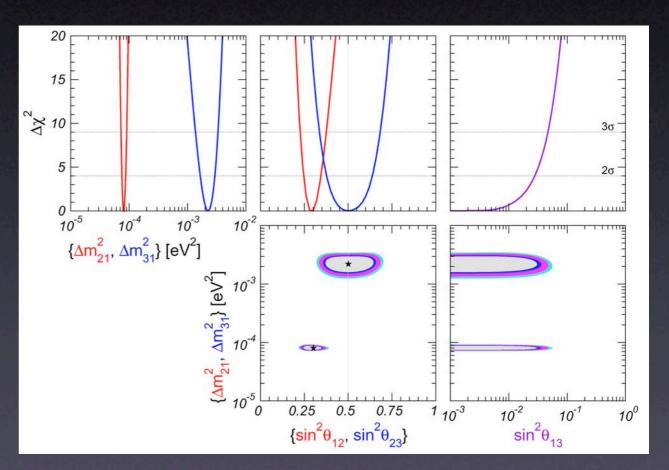
Prejudice from quarks, charged leptons:

- Mixing angles are small
- Masses are hierarchical
- All mixing except U_{e3} large

Interpretation of Data & Seven Questions

Three-generation Framework

 Standard parameterization of MNS matrix for 3 generations: 3 angles, one phase

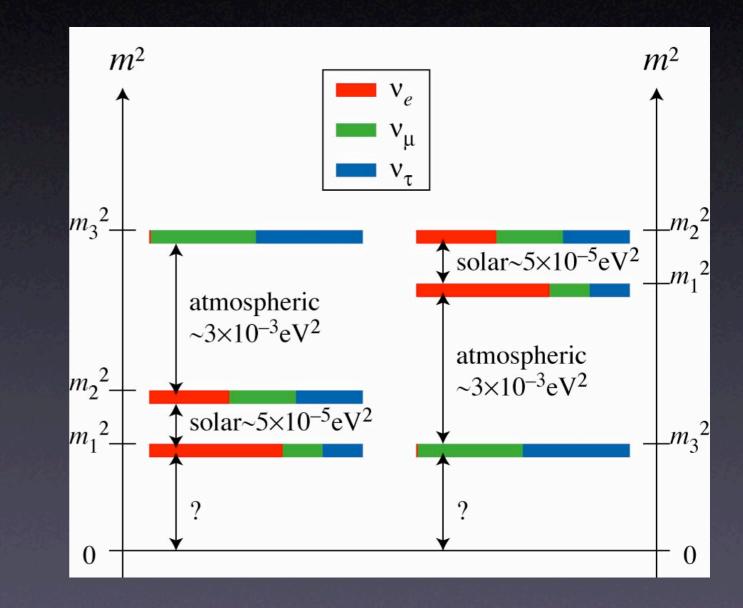

 $M_{MNS} = \begin{pmatrix} U_{e1}U_{e2}U_{e3} \\ U_{\mu1}U_{\mu2}U_{\mu3} \\ U_{\tau1}U_{\tau2}U_{\tau3} \end{pmatrix} \qquad \text{atmospheric} \\ \text{solar} \begin{pmatrix} c_{12} \ s_{12} \\ -s_{12}c_{12} \\ 1 \end{pmatrix} \begin{pmatrix} c_{13} \ s_{13}e^{-i\delta} \\ 1 \\ -s_{13}e^{i\delta} \ c_{13} \end{pmatrix} \begin{pmatrix} 1 \\ c_{23} \ s_{23} \\ -s_{23}c_{23} \end{pmatrix}$

• Three mass eigenvalues m_1, m_2, m_3

Two mass-squared differences Δm^2_{12} , Δm^2_{23}

Three-generation Solar, reactor, atmospheric

- and K2K data easily accommodated within three generations
- $\sin^2 2\theta_{23}$ near maximal $\Delta m^2_{atm} \sim 2.5 \times 10^{-3} eV^2$
- $\sin^2 2\theta_{12}$ large $\Delta m^2_{solar} \sim 8 \times 10^{-5} eV^2$
- $\sin^2 2\theta_{13} = |U_{e3}|^2 < 0.05$ from CHOOZ, Palo Verde
- Because of small sin²2θ₁₃, solar (reactor) & atmospheric
 ν oscillations almost decouple

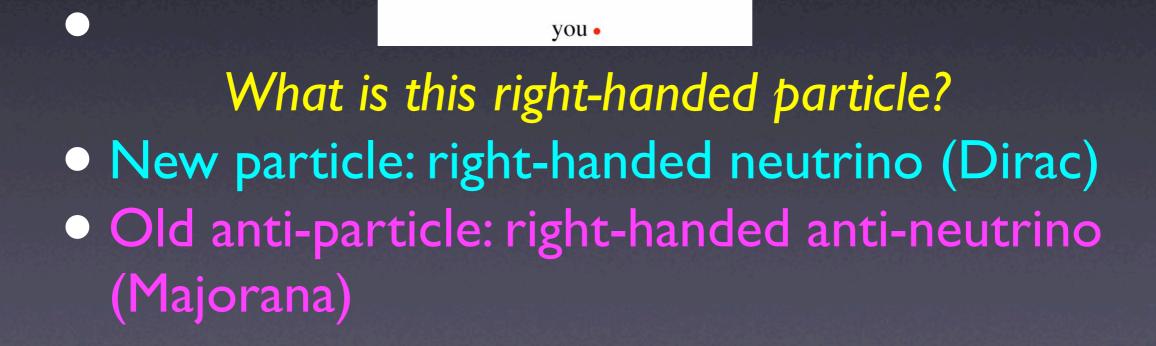


Maltoni et al, hep-ph/0405172 Unknowns: θ₁₃, δ

Six Seven Questions

Dirac or Majorana? Absolute mass scale? How small is θ_{13} ? **CPViolation?** Mass hierarchy? Varify Oscillation? LSND? Sterile neutrino(s)? CPT

violation?

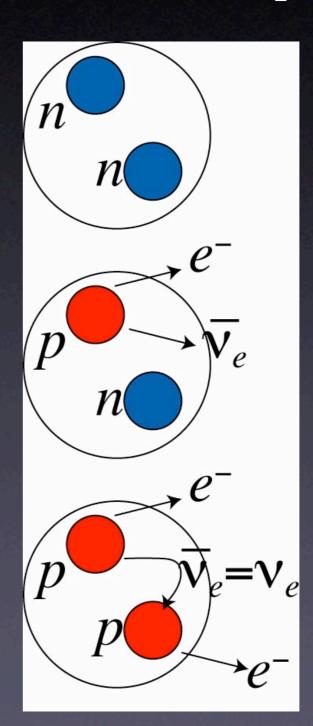

Neutrinos have mass

They have mass. Can't go at speed of light.

 v_L

you

 $v_R??$


Seesaw Mechanism

- Why is neutrino mass so small?
- Need right-handed neutrinos to generate neutrino mass, but v_R SM neutral

$$(v_{L} \ v_{R}) \begin{pmatrix} m_{D} \\ m_{D} \end{pmatrix} \begin{pmatrix} v_{L} \\ v_{R} \end{pmatrix} \qquad m_{v} = \frac{m_{D}^{2}}{M} << m_{D}$$

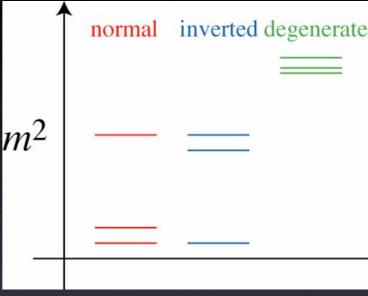
To obtain $m_{3} \sim (\Delta m_{atm}^{2})^{1/2}, m_{D} \sim m_{t},$
 $M_{3} \sim 10^{15} \text{GeV} \text{ (GUT!)}$
Neutrinos are Majorana

Neutrinoless Double-beta Decay

- The only known practical approach to discriminate Majorana vs Dirac neutrinos
- $0\nu\beta\beta$: $nn \rightarrow ppe^{-}e^{-}$ with no neutrinos
- Matrix element $\propto < m_{ve} > = \sum_{i} m_{v} |U_{ei}|^{2}$
- Current limit $|\langle m_{ve} \rangle| \leq about IeV$

Three Types of Mass Spectra

Degenerate

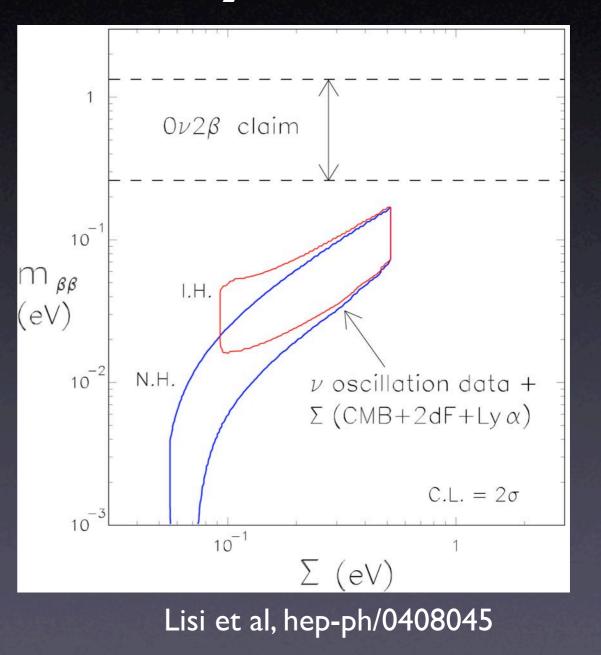

- All three around >0.1eV with small splittings
- Laboratory limit: m<2.3eV
- May be confirmed by KATRIN, cosmology
- $| < m_{ve} > | > 0.07 \text{m}$

Inverted

- $m_3 \sim 0, m_1 \sim m_2 \sim (\Delta m_{23}^2)^{1/2} \approx 0.05 \text{eV}$
- May be confirmed by long-baseline experiment with matter effect
- $|\langle m_{ve}\rangle|$ > 0.013eV (HM, Peña-Garay)

Normal

- $m_1 \sim m_2 \sim 0, m_3 \sim (\Delta m_{23}^2)^{1/2} \approx 0.05 \text{eV}$
- $| < m_{ve} > |$ may be zero even if Majorana


Cosmological Limit

- CMB+LSS+Lyman α (Seljak et al, astro-ph/0407372): $\sum_{i} m_{vi} < 0.42 \text{ eV}, m_{v1} < 0.13 \text{ eV}$ (95% CL)
- Puts upper limit on the effective neutrino mass in the neutrinoless double beta decay |<m_{ve}>|<0.13eV (Pierce, HM)
- Heidelberg-Moscow: $|\langle m_{ve}\rangle|=0.11-0.56 \text{ eV}$

Conflict?

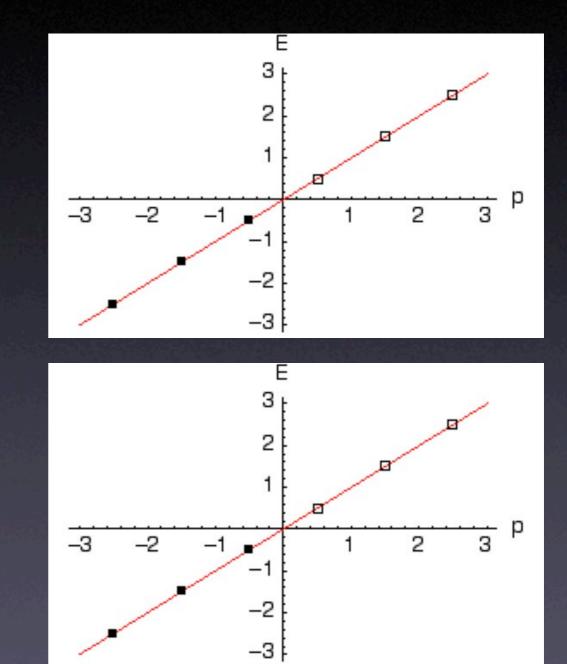
Cosmology vs Laboratory

- Global fit to the "World Data"
- indeed, tension between the Heidelberg-Moscow claim and cosmology
- Still subject to the uncertainties in nuclear matrix element (Bahcall, HM, Peña-Garay)
- Better data and theory needed!

Matter Anti-matter Asymmetry

Matter and Anti-Matter Early Universe

Matter and Anti-Matter Current Universe

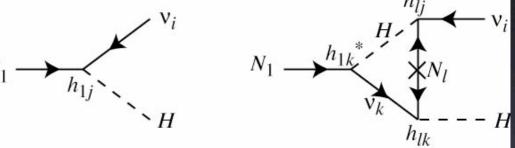

 \overline{q} The Great Annihilation

Baryogenesis

- Gaussian scale-invariant fluctuation ⇒ inflation
 Initial condition wiped out
- What created this tiny excess matter?
- Necessary conditions for baryogenesis (Sakharov):
 - I. Baryon number non-conservation
 - 2. CP violation (subtle difference between matter and anti-matter)
 - 3. Non-equilibrium
 - $\Rightarrow \Gamma(\Delta B > 0) > \Gamma(\Delta B < 0)$
- It looks like neutrinos have no role in this...

Electroweak Anomaly

- Actually, SM converts L
 (V) to B (quarks).
- In Early Universe (T > 200GeV), W is massless and fluctuate in W plasma
- Energy levels for lefthanded quarks/leptons fluctuate correspondingly

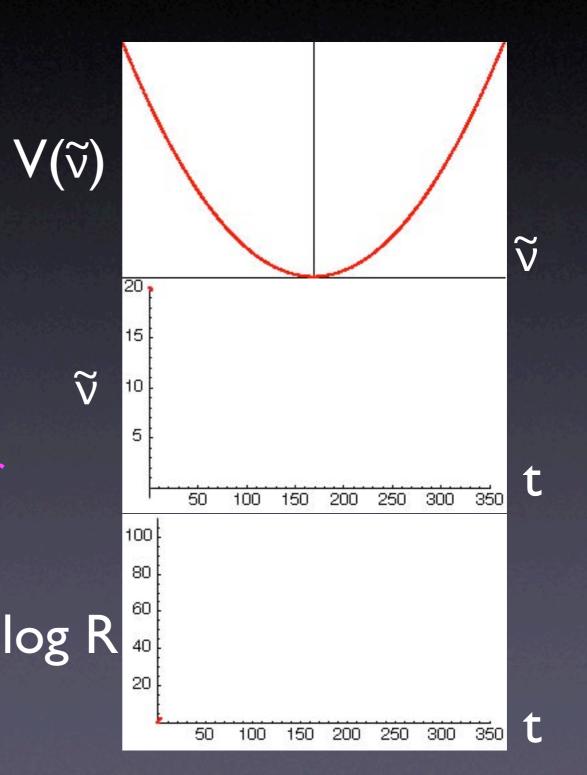

 $\Delta L = \Delta Q = \Delta Q = \Delta Q = \Delta B = I \implies \Delta (B - L) = 0$

Leptogenesis

• You generate Lepton Asymmetry first. (Fukugita, Yanagida)

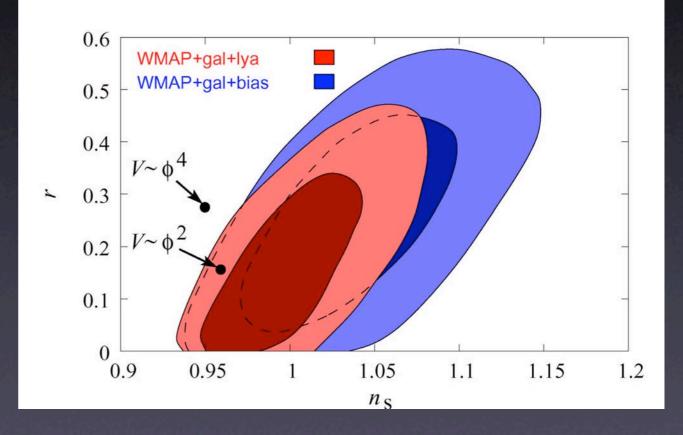
 Generate L from the direct CP violation in righthanded neutrino decay

$$\Gamma(N_1 \rightarrow v_i H) - \Gamma(N_1 \rightarrow \overline{v}_i H) \propto \operatorname{Im}(h_{1j} h_{1k} h_{lk}^* h_{lj}^*)$$


• L gets converted to B via EW anomaly

 \Rightarrow More matter than anti-matter

- ⇒ We have survived "The Great Annihilation"
- Despite detailed information on neutrino masses, it still works! (e.g., Bari, Buchmüller, Plümacher)


Neutrino as inflaton

- Superpartner of a righthanded neutrino
- $V=m^2\widetilde{v}^2$
- displaced from the minimum at the beginning
- rolls down slowly: inflation
- decays into both matter and anti-matter, but with a slight preference to matter
- decay products contain supersymmetry and hence
 Dark Matter
 H. Murayama et al, PRL 70, 1912

Origin of the Universe

- Right-handed scalar neutrino: $V=m^2\phi^2$
- $n_s = 0.96$
- r=0.16
- Verification/exclusion possible in the near future
- even if not inflaton, it may show up as a small isocurvature component

Conclusions

- Revolution in neutrino physics
 - The solar neutrino problem solved!
- Small but finite neutrino mass:
 - Interesting interplay between neutrinos and cosmos
- Neutrino mass may be responsible for our existence
- Neutrinos may even be the origin of the universe
- A lot more to learn in the next few years

V

© Disney Enterprises, Inc./Pixar Animation Studios. All Rights Reserved.