Neutrino Oscillation Experiments

Andreas Piepke

University of Alabama

Particle physics:

Neutrino masses are zero in the minimal Standard Model.

Extensions of the SM naturally give $m_v \neq 0$. \rightarrow probe new physics.

Astrophysics and cosmology:

Neutrinos are the only probes allowing us to "look" inside Sun and Supernovae.

Universe contains 330 v/cm³, from Big Bang. m_v necessary ingredient for Dark Matter problem. Important? $\Omega_v / \Omega_B < 0.3 \text{ (WMAP)}$ $\Omega_v / \Omega_B < 3.0 \text{ (Tritium decay)}$ $\Omega_B = 0.047 \pm 0.006$, $\Omega_M = 0.29 \pm 0.07$ and $\Omega_{Tot} = 1.02 \pm 0.02$

Laboratory neutrino mass measurements consistency check that can be done.

Neutrino Oscillations and Flavor Mixing

Mass (objects with definitive mass plain wave) and flavor states (objects that participate in weak interaction) are not identical.

$$\left|\nu_{\ell}(L,t)\right\rangle = \sum_{i} U_{\ell i} e^{-i(m_{i}^{2}/2E)L} \left|\nu_{i}(0)\right\rangle$$

Mixing matrix called Maki-Nakagawa-Sakata (MNS)

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} U_{e,1} & U_{e,2} & U_{e,3} \\ U_{\mu,1} & U_{\mu,2} & U_{\mu,3} \\ U_{\tau,1} & U_{\tau,2} & U_{\tau,3} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Unitary matrix, usually given in terms of a three dimensional rotation. Oscillation experiments measure the corresponding "mixing" angles.

12/17/2004

For massive neutrinos two ways of flavor conversion:

Vacuum or medium with constant parameters

During propagation phase difference increase between eigenstates gives rise to vacuum oscillations. Dense Matter, non-uniform medium MSW

Different scattering CC+NC for v_e only NC for v_{μ} and v_{τ} Gives rise to neutrino potential $\Delta V = \sqrt{2} G_F n_e$ Adiabatic flavor conversion: change of mixing in medium change of flavor of eigenstates <u>Vacuum oscillations:</u> transition probability *P*. It is an oscillatory function of the flight path L.

From energy distribution
info on
$$\Delta m_{ij}^2 = m_i^2 - m_j^2$$

from amplitude
combination of
mixing matrix
elements
 $P(v_{\alpha} \rightarrow v_{\beta}, L) = \delta_{\alpha\beta} - 4 \sum_{j>i} \mathbb{R}[U_{\alpha i}U_{\beta i}^*U_{\alpha j}^*U_{\beta}] \sin^2\left(\frac{1.27 \cdot \Delta m_{ij}^2 \cdot L}{E_v}\right)$
 $\pm 2 \sum_{j>i} \mathbb{S}[U_{\alpha i}U_{\beta i}^*U_{\alpha j}^*U_{\beta j}] \sin^2\left(\frac{2.54 \cdot \Delta m_{ij}^2 \cdot L}{E_v}\right)$
Zero for CP conservation

In matter:

Vacuum oscillations and matter induced conversion are quite different mechanisms. However, if our understanding of neutrino mass and mixing is correct both should yield a consistent set of parameters!

Solar neutrinos:

Measurements of solar neutrinos observed a flux of only 50 to 65% of that expected based on Standard Solar Model. $E_v=0.3 - 12 \text{ MeV}$, $L=1.5 \cdot 10^8 \text{ km}$. Solar neutrino problem $\Delta m_{sol}^2 = 8 \cdot 10^{-5} \text{ eV}^2$

Atmospheric neutrinos:

For neutrinos generated in pion and muon decays in atmosphere v_e flux found to agree with model predictions only 65% of expected v_{μ} flux was observed. $E_v \sim \text{GeV}$, L=30 – 10000 km. Atmospheric neutrino problem $\Delta m_{atm}^2 = 2 \cdot 10^{-3} \text{ eV}^2$

LSND:

Experiment at beam dump of LAMPF looking at neutrinos from muon decay found appearance of unexpected flavor $\overline{\nu}_{e}$. $E_{\nu} \sim 100$ MeV. L=30 m. Not yet independently confirmed! $\Delta m^{2}_{LSND} = 1 \text{ eV}^{2}$

All of these observations can be explained by neutrino oscillations.

Atmospheric neutrinos

Atmosphere

and the second second

Atmospheric Neutrino Production

Texas 2004

For multiple GeV neutrinos good directional correlation with outgoing charged lepton: measure L

Super-Kamiokande (1996-)

50,000 ton water Cherenkov detector (Fid. Mass is 22,500 tons)

11,146 × (50cm ϕ PMT) : Inner detector

40% photo-cathode coverage

Number of observed Ch photons \sim 6 /MeV (excluding scattered or reflected photons)

1,885 × (20cm ϕ PMT) : Outer detector

2m active detector region + 0.6m layer (no photon detection)

muon veto

 γ (and neutron) shield

SK collaboration: Japan, USA, Korea, Poland

Kajita-san

39m

42m

Super-K atmospheric neutrino data

Consistent with $v_{\mu} \rightarrow v_{\tau}$ oscillations due to lack of v_{e} appearance.

Independently confirmed at nuclear reactors where $v_e \rightarrow v_x$ could not be observed at Δm_{atm}^2 . Most stringent bound from Chooz and Palo Verde experiments.

Anomoulus flux ratio observed by: IMB (water Cherenkov) Kamiokande (water Cherenkov) Soudan II (iron tracking calorimeter) Macro (liquid scintillator)

SK collab. hep-ex/0404034

L/E distribution

→Evidence for oscillatory signature

Decay and decoherence disfavored at 3.4 and 3.8σ levels, respectively.

1489 days FC+PC

Kajita-san

Allowed neutrino oscillation parameters

→ Stronger constraint on Δm^2

➔ Consistent with that of the standard zenith angle analysis

Kajita-san

Super-KAMIC

K2K Collaboration

JAPAN, KOREA, U.S.A., POLAND, CANADA, ITALY, FRANCE, SPAIN, SWITZERLAND, RUSSIA

Use KEK 12 GeV proton beam on Al target. $\langle E_v \rangle = 1.3$ GeV v_{μ} from π^+ decay in flight, π^- suppressed by focusing horns.

K2K energy spectrum (based on single-ring μ -like events) 18 Entries 56 Number of events ¹⁶ MC (no osc.) MC normalization: 14 number of events 12 MC (osc.) 10 108 events obs'd 150.9±11 events 2 expected 0 3.5 0.5 1.5 2 2.5 4.5 'n 3 [GeV] $Ev^{rec}[GeV]$

Deficit of events

Allowed parameter region

Very strong evidence for $v_{\mu} \rightarrow v_{\tau}$ oscillations with:

 $\Delta m_{atm}^2 = (2.2 \pm 0.7) \cdot 10^{-3} \text{ eV}^2$ $\sin^2 \theta_{23} = 0.5 \pm 0.14$

Maltoni et al. hep-ph/0405172 Maximal mixing!

Zenith angle dependent atmospheric neutrino flux tell-tale sign of oscillations. Consistent with reactor experiments. Confirmed at particle accelerator.

There is a solid case for oscillations.

Solar neutrinos

Yohkoh/SXT

1-JAN-99 09:24:06UT

Quantitative solar model gives absolute flux model (Standard Solar Model by Bahcall et al.)

Measurements of solar neutrinos proved that nuclear fusion is powering the sun.

The solar neutrino problem

Experiment	Year	Detection Reaction	Ratio Exp/BP2000
Chlorine (127 t)	1970- 1995	$^{37}\text{Cl} + \nu_e \rightarrow \ ^{37}\text{Ar} + e^{-1}$	0.34 ± 0.03
Kamiokande (680t)	1986- 1995	$\nu_x + e^- \rightarrow \nu_x + e^-$	0.54 ± 0.08
SAGE (23 t)	1990-	$^{71}\text{Ga} + \nu_e \rightarrow ^{71}\text{Ge} + e^{-1}$	0.55 ± 0.05
Gallex + GNO (12 t)	1991-	$^{71}\text{Ga} + \nu_e \rightarrow ~^{71}\text{Ge} + e^{-1}$	0.57 ± 0.05
SuperK (22kt)	1996-	$\nu_x + e^- \rightarrow \nu_x + e^-$	0.451 ^{+0.017} _0.015

The solution of the problem: SNO and KamLAND

J.Wilkerson

The SNO Collaboration

SNO Solar v Physics

Φ

e

$$cc$$
 $v_e + d \Rightarrow p + p - d$

- Gives ν_{e} energy spectrum well
- Weak direction sensitivity \propto 1-1/
- ν_{e} only.

$$v_x + d \Rightarrow p + n + v_x$$

- Measure total $^8\text{B}\,\nu$ flux from the
- Equal cross section for all ν type

(ES)
$$V_x + e^- \Rightarrow V_x + e^-$$

- Low Statistics
- Mainly sensitive to $\nu_{e,}$, some -sensitivity to ν_{u} and ν_{τ}
- Strong direction sensitivity

J.Wilkerson

Key physics signatures

$$\frac{\Phi_{cc}}{\Phi_{es}} = \frac{\nu_{e}}{\nu_{e} + 0.154(\nu_{\mu} + \nu_{\tau})}$$

$$\Phi_{Bx} = \Phi_{nc}$$

$$B_{Bx} = \Phi_{cc} + (\Phi_{es} - \Phi_{cc})/.015$$

$$\Phi_{day} \quad vs \quad \Phi_{night}$$

$$\Phi_{cc} \quad E \text{ spectrum}$$

SNO - 3 neutron detection methods

J.Wilkerson

³H

6.25 MeV

 $n + {}^{3}\text{He} \rightarrow p + {}^{3}\text{H}$

Solar v Results from SNO

Solar v deficit is due conversion of electron type neutrinos into muon or tau neutrinos, as shown by NC measurement.
 → solar matter induced flavor conversion.
 J.Wilkerson

SNO First Salt Result (PRL 92, 181301, 2004)

<u>Demonstrate at nuclear reactor by means of</u> <u>vacuum oscillations: KamLAND</u>

•Demonstrate neutrino oscillations in Δm^2_{sol} -range using reactor <u>anti-neutrinos</u>.

•Precision measurement of θ_{sol} and Δm^2_{sol}

Solar experiments

Neutrinos $1.5 \cdot 10^8$ km v's travel through dense matter Strong magn. field ($10^3 - 10^4$ G) Solar model \rightarrow Orthogonal approach

KamLAND

Anti-neutrinos 200 km Very little matter Weak magn. field Reactor model

The KamLAND Collaboration

T. Araki,¹ K. Eguchi,¹ S. Enomoto,¹ K. Furuno,¹ K. Ichimura,¹ H. Ikeda,¹ K. Inoue,¹ K. Ishihara,^{1,*}
T. Iwamoto,^{1,*} T. Kawashima,¹ Y. Kishimoto,¹ M. Koga,¹ Y. Koseki,¹ T. Maeda,¹ T. Mitsui,¹ M. Motoki,¹
K. Nakajima,¹ H. Ogawa,¹ K. Owada,¹ J.-S. Ricol,¹ I. Shimizu,¹ J. Shirai,¹ F. Suekane,¹ A. Suzuki,¹ K. Tada,¹
O. Tajima,¹ K. Tamae,¹ Y. Tsuda,¹ H. Watanabe,¹ J. Busenitz,² T. Classen,² Z. Djurcic,² G. Keefer,²
K. McKinny,² D.-M. Mei,^{2,†} A. Piepke,² E. Yakushev,² B.E. Berger,³ Y.D. Chan,³ M.P. Decowski,³ D.A. Dwyer,³
S.J. Freedman,³ Y. Fu,³ B.K. Fujikawa,³ J. Goldman,³ F. Gray,³ K.M. Heeger,³ K.T. Lesko,³ K.-B. Luk,³
H. Murayama,³ A.W.P. Poon,³ H.M. Steiner,³ L.A. Winslow,³ G.A. Horton-Smith,⁴ C. Mauger,⁴ R.D. McKeown,⁴
P. Vogel,⁴ C.E. Lane,⁵ T. Miletic,⁵ P.W. Gorham,⁶ G. Guillian,⁶ J.G. Learned,⁶ J. Maricic,⁶ S. Matsuno,⁶
S. Pakvasa,⁶ S. Dazeley,⁷ S. Hatakeyama,⁷ A. Rojas,⁷ R. Svoboda,⁷ B.D. Dieterle,⁸ J. Detwiler,⁹ G. Gratta,⁹
K. Ishii,⁹ N. Tolich,⁹ Y. Uchida,^{9,‡} M. Batygov,¹⁰ W. Bugg,¹⁰ Y. Efremenko,¹⁰ Y. Kamyshkov,¹⁰ A. Kozlov,¹⁰
Y. Nakamura,¹⁰ C.R. Gould,¹¹ H.J. Karwowski,¹¹ D.M. Markoff,¹¹ J.A. Messimore,¹¹ K. Nakamura,¹¹

Is there a definite Oscillation Baseline L?

The Baseline has a rather well defined range:

The total electric power produced "as a by-product" of the vs is:
•~60 GW or...
•~4% of the world's manmade power or...
•~20% of the world's nuclear power

Deliver well understood electron anti-neutrino beam. Extensively tested at short distances.

1exas 2004

The KamLAND Detector

v det. at low energy is tricky: beware of backgrounds !

O Detector site : Old Kamiokande site (2700 m.w.e.)

1,000 ton Liquid Scintillator 80%: dodecane, 20%: pseudocumene, 1.5 g/liter: PPO (= 0.78) housed in spherical balloon (13m diameter) of transparenet nylon/EVOH composite film (135 m) supported by cargo net structure

3,000 m³ Scintillation Light Detector
18m diameter stainless steel tank filled with paraffin oil (= 0.04%, lighter than LS)
1,325 17-inch+554 20-inch PMT's photosensitive coverage ~ 34 %
3mm thick acrylic wall (120 plates) : Rn barrier

Water Cherenkov Outer Detector 225 Kamiokande 20-inch PMT's The Data

Number of Observed & Expected Events

	1st result	2nd result (515.1 d)	
	162.2 ton•yr	766.3 ton•yr	
Observed ev.	54	258	
Expected ev.	86.8 ± 5.6	365.2 ± 23.7	
Background ev. accidental	0.95 ± 0.99 0.0086 ± 0.0005	17.8 ± 7.3 2.69 ± 0.02	
⁹ Li/ ⁸ He (β, n)	0.94 ± 0.85	4.8 ± 0.9	
fast neutron α(¹³ C,n) ¹⁶ O	0 ± 0.5 1.9±1.3	< 0.89 10.3±7.1	

On average 2 days per hit! For a 540 ton detector.

Evidence for Reactor $\overline{v_e}$ **Disappearance**

$$\frac{N_{obs} - N_{BG}}{N_{expected}}$$

$$= 0.658 \pm 0.044 \text{ (stat)} \pm 0.047 \text{ (syst)}$$

$$= 0.611 \pm 0.085 \text{ (stat)} \pm 0.041 \text{ (syst)}$$

$$= 0.611 \pm 0.085 \text{ (stat)} \pm 0.041 \text{ (syst)}$$

$$= 0.611 \pm 0.085 \text{ (stat)} \pm 0.041 \text{ (syst)}$$

1st result : Evidence for Reactor Antineutrino Disappearance

What else do we know?

Energy spectrum adds substantial information

Fit to a rescaled reactor spectrum is much worse (χ²/ndf=37.3/18, goodness 0.4%) So the evidence for oscillations does not simply rely on the knowledge of reactor power

Un-binned likelihood fit to 2-flavor oscillations

Allowed Parameter Regions (spectrum only fit)

Combined solar v – KamLAND 2-flavor analysis

SNO shows deficit in v_e flux but the correct $v_e + v_\mu + v_\tau$ flux \rightarrow evidence for particle physics solution of solar vproblem. Solar model is basically correct.

- \overline{v}_{e} disappearance observed in KamLAND at 99.998% c.l.
- KamLAND data shows significant spectral modification \rightarrow direct evidence for neutrino oscillations.
- Solar neutrino deficit explained through MSW effect. Terretrial measurement observes same mixing parameters using anti-particles and vacuum oscillations.
- Take SNO and KamLAND together: the solar neutrino problem has been resolved.

Combined analysis with solar experiments yields:

 $\Delta m_{12}^2 = 7.9 + 0.6 + 0.00 + 0.00 + 0.00 + 0.00 + 0.00 + 0.0000 + 0.000 + 0.000 + 0.000 +$

There is now direct and independently confirmed evidence for v oscillations in both the atmospheric and solar parameter ranges.

Neutrinos are massive particles!

$$\Delta m_{31}^2 = (2.2_{-0.5}^{+0.7}) \cdot 10^{-3} \text{ eV}^2 \qquad \sin^2 \theta_{23} = 0.5_{-0.12}^{+0.14}$$

$$\Delta m_{21}^2 = (7.9_{-0.5}^{+0.6}) \cdot 10^{-5} \text{ eV}^2 \qquad \sin^2 \theta_{12} = 0.3_{-0.05}^{+0.04}$$

$$\sin^2 \theta_{13} < 0.028$$

Absolute mass still unknown. If degenerate (<2.2 eV) could be important DM component.

To be determined by new generation of β -decay and $\beta\beta$ -decay experiments.