The Status of Theoretical and Observational Work on Ultra High Energy Cosmic Rays

> Alan Watson University of Leeds Leeds LS2 9JT, Uk a.a.watson@leeds.ac.uk

> > Texas @ Stanford 17 December 2004

Interest in studying UHECR

• A primary interest is in establishing the existence, or otherwise, of the Greisen-Zatsepin-Kuzmin cut-off

 $\mathbf{p} + \gamma_{2.7k} \rightarrow \Delta^+ \rightarrow \mathbf{p} + \pi^0$ $\mathbf{n} + \pi^+$

If particles are observed > 5 x 10^{19} eV, then they must be local (**GZK cut-off**)

Local depends on energy:>4 x 10^{19} eV 50% from within 130 Mpc> 10^{20} eV 50% from within 20 MpcSo ANISOTROPIES expected from nearby sources

No steepening and no anisotropy would be an enigma

Primary Goals of UHECR Research

- To measure the properties of the highest energy cosmic rays
 - Energy Spectrum
 - Arrival Direction Distribution
 - Mass Composition: Baryonic Masses Photons Neutrinos

Top Down Mechanisms

Developed under assumption that protons dominate at highest energies and consequently acceleration is difficult.

• Topological defects:

Cosmic strings and necklaces

Decay of monopoles

Manifestations of Super-heavy relic particles decaying

Present Status of the Field

• AGASA instrument closed down in early January 2004 approximately 1600 km² sr years

> Spectrum Arrival Directions Mass Composition

• HiRes now operating in stereo mode

Spectrum from HiRes I and HiRes II Statement on Mass at energy lower than AGASA Data on arrival directions

• Pierre Auger data run started on 1 January 2004

Corrections necessary to determine energy from fluorescence

Song et al Astroparticle Physics 2000

For AGASA, the energy estimates are **LOWER** if iron is assumed

Simulation	Single	Altitude	Interaction	Primary	$E = a \times 10^{17} \cdot S_{\rm c}(600)^{b}$			Citatio
Code	Particle	Aititude	Model	Composition	$L = a \times a$	10 · 50(0	$S_0 =$	50 v
COSMOS	"electrons"	900m	QCDJET	р	2.03	1.02		[15]
CORSIKA	PH_{peak}^0	900m	QGSJET98	р	2.07	1.03	1.04	[20]
(v5.623)				Fe	2.24	1.00		*
			SIBYLL1.6	р	2.30	1.03	1 13	♠
				Fe	2.19	1.01	1.10	Ļ
AIRES	PW_{peak}^{θ}	$667 \mathrm{m}$	QGSJET98	р	2.17	1.03	4 00	[21]
(v2.2.1)				Fe	2.15	1.01	1.09	¥
			SIBYLL1.6	р	2.34	1.04	1.13	1
				Fe	2.24	1.02		↓

From Takeda et al Astroparticle Physics 2003

Mass Composition: muon content

 N_{μ} (>1 GeV) = AB(E/A ϵ_{π})^p (depends on mass/nucleon)

- $N_{\mu}(>1 \text{ GeV}) = 2.8A(E/A\epsilon_{\pi})^{0.86} \sim A^{0.14}$
- So, more muons in Fe showers
- Muons are about 10% of total number of particles
- Used successfully at lower energies (KASCADE)
- VERY expensive especially at high energies

- ONLY AGASA DATA: muon density at 1000 m

Results from the AGASA array

"Consistent with proton dominant component"

Summary of baryonic mass composition claims

Mass information from study of Inclined Showers

Example: Photon limit at 10¹⁹ eV (Ave et al. Phys Rev Lett 2000)

Pierre Auger Collaboration

Czech Republic France Germany Italy Poland Slovenia Spain United Kingdom Argentina Australia Brasil Bolivia^{*} Mexico USA Vietnam^{*}

*Associate Countries

~250 PhD scientists from 63 Institutions and 15 countries

Pierre Auger Observatory: Status at December 2004

Six Telescopes viewing 30°x30° each

Schmidt Telescope using 11 m² mirrors

Camera with 440 PMTs (Photonis XP 3062)

Good Progress in Analysis Detailed studies under way

Inclined events

5 May 2004 33 tanks $\theta = 72^{0}$ R=37 km

Event 673411

Fluorescence Display

Coiheco (6 pixels)

Los Leones (29 pixels)

The Power of Hybrid Geometry

105573

Hybrid events are equivalent to stereo events and superior to mono events

Event 673411

Hybrid Reconstruction

Event 673411

 N_e maximum ~ 7x10¹⁰ for energy = 10²⁰ eV

Fluorescence energy ~ 2x10¹⁹ eV preliminary! Surface detector energy ~ 2.1x10¹⁹ eV

Ideas to explain the Enigma - if there turns out to be one

 Decay of super-heavy relics from early Universe (or top down mechanisms)
Wimpzillas/Cryptons/Vortons

Predictions: dominance of photons (?) and neutrinos

- New properties of old particles
- Breakdown of Lorentz Invariance

Concept of neutrino detection : Berezinsky and Smirnov 1975, Capelle et al 1998

Tau neutrino detection

Principle:

- Interaction length in the earth ~ 300 km at 10¹⁸ eV
- Tau time of flight ~ 50 km at 10¹⁸ eV
- 1° below horizon \Rightarrow 200 km of rock
- Shower maximum ~10 km after decay In practice $85^{\circ} < \theta_z < 95^{\circ}$ AUGER window: 10^{17} to 10^{20} eV

X.Bertou, P.Billoir, O.Deligny A.Letessier-Selvon

Accepted in Astropart. Phys. Ab P 17, 183, 2002

Neutrino Sensitivity of Auger Observatory

Bertou et al. 2001

Potential of the Auger Observatory

111 • Directions

- $\sqrt{\sqrt{}}$ • Energy
- Mass
 - **photons** $\checkmark \checkmark X_{max}$, shower front thickness, inclined events
 - - neutrinos
 - protons or iron?

HARDER: will use X_{max}, LDF, FADC traces, inclined events, radius of curvature...

Conclusions

- The Pierre Auger Observatory is now taking data
- By March 2005, the exposure with be similar to AGASA and we will rapidly overtake HiRes stereo. First results will be reported ~30 June 2005.
- There are still some funding difficulties (~\$1.4 M)
- Planning for the Northern Site is underway although, clearly, it will be influenced by what is seen in the South.
- We are looking forward to seeing our first point source and to understanding how far the spectrum extends beyond 10²⁰ eV.