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Studying the effectsStudying the effects……



Special Relativistic EffectsSpecial Relativistic Effects

•• AberrationAberration

•• TimeTime--ofof--flight delaysflight delays

•• Retardation of magnetic fieldRetardation of magnetic field
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Retarded vacuum dipole magnetic fieldRetarded vacuum dipole magnetic field
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Arendt & Eilek 1998



Sweepback of magnetic fieldSweepback of magnetic field

α = 90o

Yadigaroglu 1997



Magnetic field retardation: distortion of polar capMagnetic field retardation: distortion of polar cap

Dyks & Harding 2004



Projected field lines Projected field lines 
from single polefrom single pole

Sweepback only Sweepback only ……

plus aberration plus aberration ……

… and travel time delay

Yadigaroglu 1997



General Relativistic EffectsGeneral Relativistic Effects

•• Photon red shiftPhoton red shift

•• Bending of lightBending of light

•• Dipole field in curved spaceDipole field in curved space--timetime

•• Inertial frameInertial frame--dragging dragging 
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General Relativistic EffectsGeneral Relativistic Effects

•• Dipole field in curved spaceDipole field in curved space--timetime
Wasserman & Shapiro (1983)

Classical

GR

•• Increase in surface Increase in surface 
field strengthfield strength

•• Smaller polar cap Smaller polar cap 
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•• InertialInertial--frame draggingframe dragging
LenseLense--Thirring Thirring effecteffect
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Frame dragging electric fieldFrame dragging electric field

||

1/ 2
0 sin cos

2
rE
R

θ α φ
−

⎛ ⎞∝ ⎜ ⎟
⎝ ⎠ 3 0.15I

R
κ ∝

4

cosr
R

κ α
−

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

|| 4 ( )GJE π ρ ρ∇ = − [ ]1 v
4GJ B

c
ρ

π
≈ − ∇ ×

FrameFrame--dragging dragging dominatesdominates!!

1 1 (w-v)
4GJ B

c
ρ

π α
⎡ ⎤≈ − ∇ ×⎢ ⎥⎣ ⎦

42
GR

Cl

E
P

E
≈

Arons & Scharlemann 1979Muslimov & Tsygan 1992



Decoding the signalsDecoding the signals……



Seven High-Confidence Gamma-Ray Pulsars
Crab B1509-58 Vela B1706-44
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Profiles of millisecond pulsarsProfiles of millisecond pulsars
PSR J0437-4715

PSR B1937+21

X-ray peaks (mostly) in 
phase with radio peaks

PSR B1821-24PSR J0218+4232

XX--RayRay

RadioRadio



Profiles of Short Period PulsarsProfiles of Short Period Pulsars

RadioRadio

OpticalOptical

PSR B0540PSR B0540--69 69 
50 ms pulsar in LMC50 ms pulsar in LMC

Manchester et al. 1993

Middleditch et al. 1985

dePlaa et al. 2003

PSR J1617PSR J1617--5055 5055 
69 ms pulsar in RCW10369 ms pulsar in RCW103

XX--RayRay



Caustic emissionCaustic emission Morini 1983 

•• Particles radiate along last open field line from polar cap Particles radiate along last open field line from polar cap 
to light cylinderto light cylinder

•• TimeTime--ofof--flight, aberration and phase delay cancel on flight, aberration and phase delay cancel on 
trailing edge       emission from many altitudes arrive in trailing edge       emission from many altitudes arrive in 
phase          phase          causticcaustic peaks in light curvepeaks in light curve



Formation of causticsFormation of caustics
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Caustic emissionCaustic emission
•• Dipole magnetic fieldDipole magnetic field
•• Outer edge of open volumeOuter edge of open volume

Emission on trailing field linesEmission on trailing field lines
•• Bunches in phaseBunches in phase
•• Arrives at inertial observer Arrives at inertial observer 

simultaneouslysimultaneously

Emission on leading field linesEmission on leading field lines
•• Spreads out in phaseSpreads out in phase
•• Arrives at inertial observer Arrives at inertial observer 

at different timesat different times

Formation of causticsFormation of caustics



Romani & Yadigaroglu 1995
Cheng, Ruderman & Zhang 2000

Outer Gap ModelOuter Gap Model

Ω •



Slot gap modelSlot gap model
• Pair-free zone 

near last open 
field-line
(Arons 1983, Muslimov & 
Harding 2003, 2004)

Slower acceleration
Pair formation front at 

higher altitude
Slot gap forms 

between conducting 
walls

• E|| acceleration is 
not screened || 0E =



Slot gap/Caustic ModelSlot gap/Caustic Model
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Slot gap/caustic model: emission altitudesSlot gap/caustic model: emission altitudes

α = 70o, ζ = 50o

Caustic emission occurs at Caustic emission occurs at 
altitudes ~ 0.1 altitudes ~ 0.1 –– 0.6 0.6 RRlclc



Radio emission in caustic peaks?Radio emission in caustic peaks?
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GammaGamma--ray and radio caustic peaksray and radio caustic peaks

CRAB

Additional components appear 
at frequencies above 2 GHz
(Moffett & Hankins 1996)

MHz



Detecting the signaturesDetecting the signatures……



Polarization of Crab Pulsar Polarization of Crab Pulsar ––
signature of caustics?signature of caustics?

OPTIMA, Kanbach et al. 2003 Dyks, Harding & Rudak 2004



XX--ray ray polarimetrypolarimetry

Present

INTEGRAL  100-500 keV

RHESSI       >20 keV

Future

AXP      2-10 keV POGO   25-200 keV



Gupta & Gangadhara (2003)

Relativistic phase shifts in radio profilesRelativistic phase shifts in radio profiles
(Blaskiewicz, Cordes & Wasserman 1991, Gangadhara & Gupta 2001)
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Curvature radiation from millisecond pulsars:Curvature radiation from millisecond pulsars:
constraining frameconstraining frame--dragging accelerationdragging acceleration
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ConclusionsConclusions

•• SR effects strongly influence emission in outer SR effects strongly influence emission in outer 
magnetosphere (> 0.1 Rmagnetosphere (> 0.1 RLCLC) ) –– all altitudes for ms all altitudes for ms 
pulsarspulsars

•• GR effects strong near NS surfaceGR effects strong near NS surface

•• Fast pulsars    caustics influence light curves at Fast pulsars    caustics influence light curves at 
both radio and high energies    phase coincidenceboth radio and high energies    phase coincidence
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