Testing GR with the Double Pulsar: Recent Results

Michael Kramer

With:

PP•\RC

The University of Manchester

Jodrell Bank Observatory

STER

MANCH

M.Burgay, F.Camilo, N.D'Amico, P.Freire, B.Joshi, D. Lorimer, A. Lyne, R.Manchester, M.McLaughlin, A.Possenti, I.Stairs

Texas Symposium – 16 December 2004

The University of Manchester

Jodrell Bank Observatory

Outline

Introduction

The system

Interaction between A&B

Tests of General Relativity

Improved parameters

New measurements & tests

The Future

The University of Manchester

Observatory

Discovery of "A"

PSR J0737-3039 discovered in April 2003 in an PKSMB extension: the Parkes High-LatitudePulsar Survey (Burgay et al., Nature, 2003)

J0737-3039

File: PH0042_00481 RAN: 07.380:00.6 Deal: -30:333.9 (B: 245.164 Ob: --4.422 Dote: 016822 Centre frag. (Hz): 44.0130271 Centre period (rms): 22.72054863 Centre DM: 48.70 File stort (bina): 1 Spectral s/n: 25.4 Recon s/n: 16.1 Bill. length (s) 0.38400 L (Hz): 0.0139 - First eten os: close 3 Hef Much: 2314309738 DB: 0F Mulb: 2514390532 1.0 Cond: 40.7039 - First eten os: close 3 Hef Much: 2314309738 DB: 0F Mulb: 2514390532

The University of Manchester Jodrell Bank Observatory

MANC

Discovery of "A"

Observations showed that the orbit is very tight ($P_p=2.4$ hrs) and eccentric (e = 0.088) with orbital velocities of ~300 km/s!

Orbital parameters suggested that the companion to 22-ms pulsar is probably another neutron star

Discovery of "B"

In October 2004 the system became sensational:

The University of Manchester

Jodrell Bank Observatory

Discovery of "B"

In October 2004 the system became sensational: A "holy grail" was discovered - the first double pulsar!

A double pulsar system

The University of Manchester

Jodrell Bank

Observatory

Ť

0.4

0.6

Science

Discovery of an additional 2.77-sec periodicity! (Lyne et al., Science, 2004)

MAAAS

0.8

The University of Manchester Jodrell Bank Observatory	Basic param	neters
	A: 22.7 ms	2.77 s
P	1.7 x 10 -18	0.82 x 10 ⁻¹⁵
Char.age	200 Myr	50 Myr
B _{surf}	6 x 10 ⁹ G	1.6 x 10 ¹² G
R _{LC}	1,080 km	1.32 x 10 ⁵ km
B _{LC}	5 x 10 ³ G	0.7 G
dE/dt	6 x 10 ³³ erg	s ⁻¹ 1.6 x 10 ³⁰ erg s ⁻¹
Mean V _{orb}	301 km s ⁻¹	323 km s ⁻¹

Evolution of the Double Pulsar

"P-Pdot diagram:"

The University of Manchester Jodrell Bank Observatory

STER

MANCH

A is old & recycled B is young

Their life in short:

The University of Manchester		
Observatory	asic param	neters
	A:	B :
P	22.7 ms	2.77 s
P	1.7 x 10 ⁻¹⁸	0.82 x 10 ⁻¹⁵
Char.age	200 Myr	50 Myr
B _{surf}	6 x 10 ⁹ G	1.6 x 10 ¹² G
R _{LC}	1,080 km	1.32 x 10 ⁵ km
BLC	5 x 10 ³ G	0.7 G
dE/dt	6 x 10 ³³ erg s	s ⁻¹ 1.6 x 10 ³⁰ erg s ⁻¹
Mean V _{orb}	301 km s ⁻¹	323 km s ⁻¹

Wind energy density at B light cylinder:
 A: ~ 2.1 erg cm⁻³ B: ~ 0.024 erg cm⁻³

The University of Manchester

Jodrell Bank

Observatory

TER

MANCH

- Therefore, A wind will penetrate B magnetosphere.
- Approximate pressure balance with B's magnetic field at $r \sim 0.5 R_{LC}$. Will vary with spin and orbital phase.

Orbital modulation of "B" emission

Two bright intervals near inferior conjunction:

The University of Manchester

MANCHESTER

The University of Manchester

Jodrell Bank Observatory

Eclipses of A

We can see the rotation of B!

The University of Manchester

Jodrell Bank Observatory

Boost for gravitational wave hunters

Neutronstars merge after only 85 Myr due to gravitational wave emission!

Since system... ...is accelerated ...merges "soon" ...is close ...not very luminous

Also, orbital decay and huge rel.spin-orbit coupling!

2

-2

Ō

X (lt-s)

bservatory

Geodetic Precession

Relativistic Spin-Orbit Coupling First prediction for binary pulsar by Damour & Ruffini (1974)

 Precession rate expected in GR: (e.g. Barker & O'Connell 1975, Börner et al. 1975)

Orbi

$$\Omega^{p} = \left(\frac{2\pi}{P_{b}}\right)^{5/3} T_{\odot}^{2/3} \frac{m_{c}(4m_{p} + 3m_{c})}{2(m_{p} + m_{c})^{4/3}} \frac{1}{1 - e^{2}}, \ T_{\odot} = GM_{\odot}c^{-2}$$

What effects do we expect to observe?

Effects of Geodetic Precession

Deservatory Effects of Geodetic Precession

Ratio

1987.1

Separation

Profile

μ

Pulse shape changes!

Effects of Geodetic Precession

The University of Manchester Jodrell Bank Observatory

Pulse shape changes (seen in B1913+16, B1534+12, J1141-6545!)
B1913+16 (Period 300 yr) will disappear ~2025! (Kramer 1998)
Total precession period of J0737-3039 only 75 years!!

Detection of Shapiro delay

Pulses of A are delayed when propagating through curved space-time near B:

Compare to scintillation measurements...

MANC

Scintillation measurements Even better: at conjuction they see the same ISM ⇒ correlation of scintillation properties:

ISM

72

However, ISS result of i=90.26±0.13 inconsistent with Shapiro result:

Kramer et al. (in prep.)

Binary pulsars as gravity labs: mass-mass plot

Elegant method to test any theory of gravity

(see Damour & Deruelle 1986, Damour & Taylor '92)

All PK parameter can be written as function of only observed Keplerian and the masses of pulsar and companion

The University of Manchester Jodrell Bank Observatory

Grav. Redshift-+ 2nd order Doppler

0.5

0

0

62

1.5

2

Tests of GR

The University of Manchester Jodrell Bank Observatory

MANCHESTER

The University of Manchester Jodrell Bank Observatory

MANCHESTER

Mass A (M_{Sun})

MANCHESTER

The University of Manchester Jodrell Bank Observatory

MANCHESTER

Mass A (M_{Sun})

Tests of GR

December 2003 (Lyne et al. 2004)

Tests of GR

Mass ratio & 5 PK parameters ⇔6-2 = 4 potential tests! More than in any system!

Mass A (M_{Sun})

Tests of GR

Kramer et al. in prep.

Mass A (M_{Sun})

Tests of GR

Kramer et al. in prep.

The University of Manchester Jodrell Bank Observatory

STER

MANCHE

Precision of 0.08%

Future: Predicted precision

Difficult to predict behaviour of mass ratio, R
For PK parms, precision increases due to more but also more precise data:

Jodrell Bank Observatory

(also depends on orbital orientation!)

Δώ/ώ α T^{-1.5}: expected since Science paper factor 4 actual improvement a factor of 100!

Asini/sini α T^{-0.5}: expected since Science paper factor 1.6 actual improvement a factor of 10!

Δγ/γ α T^{-1.5}: expected since Science paper factor 4 actual improvement a factor of 10!

Further expected scaling: $\Delta(dP_b/dt)/(dP_b/dt) \alpha T^{-2.5}$

 $\Delta \delta_{\theta} / \delta_{\theta} \alpha T - 2.5$

Dominated by transverse speed: VLBI obs.underway

bservatory)

Aberration

• Pulsar rotates rather than pulses • Aberration contributes to timing & profile • ToAs are modified by "aberration delay" (DD86) $\Delta_A = A\{\sin[\omega + A_e(u)] + e\sin\omega\} + B\{\cos[\omega + A_e(u)] + e\cos\omega\}$ with PK parameters A and B which are usually absorbed in Roemer delay as: $x_{1e} = (1 + \varepsilon_e)x_e$

However...

 $x_{obs} = (1 + \varepsilon_A) x_{int}$ $e_{obs} = (1 + \varepsilon_A) e_{int}$ $\delta_{\theta}^{obs} = \delta_{\theta}^{int} - \varepsilon_A$ $\delta_r^{obs} = \delta_r^{int} - 3\varepsilon_A, \ \varepsilon_A = \frac{A}{x}$ Damour & Taylor (1992)

Aberration & Geodetic Precession

Aberration parameters will change due to

geodetic precession:

 $\frac{d\varepsilon_A}{dt} = -\frac{P_p}{P_b} \frac{1}{\sin i(1-e^2)^{1/2}} \frac{d}{dt} \left(\frac{\sin \eta}{\sin \lambda}\right)$

Damour & Taylor (1992)

leading to different geometries, so that A & geometry may be determined! Expected:

 $A = -0.365 \mu s \times geometry!!$

But spin-orbit coupling is likely to visible in other ways too...

The University of Manchester Jodrell Bank Observatory

Spin contributions

We have seen that spin-coupling is large:

PK parameters are only expected to meet in a single point of mass-mass diagram IF spin contributions are negligible
For instance, periastron advance is usually only used in 1PN approximation ignoring spin
Formally, spin-orbit coupling enters at 1PN level!
For binary pulsars however, numerically they are of size as 2PN effects (Wex 1995)

Spin contributions

The University of Mancheste Iodrell Bank

Observatory

Total periastron advance at 2PN level: Damour & Schaefer (1988)

Neutronstar structure

Total periastron advance to 2PN level: Damour & Schaefer (1988)

$$k^{tot} = \frac{3\beta_0^2}{1 - e_T} \Big[1 + f_0 \beta_0^2 - g_s^A \beta_0 \beta_s^A - g_s^B \beta_0 \beta_s^B \Big]$$

2PN

Spin

Neutron star dependent

 $2\pi c$ 1

G P

Som

Equation-of-State! Measure NS moment of inertia!!!

1PN

The University of Manchester

Jodrell Bank

Observatory

STER

MANCH

Observatory

Summary

- Beautiful laboratory for plasma physics
- Invaluable for studying pulsar magnetospheres
- Unique test-bed for relativistic gravity
- Most over-constrained system already
- Only system with constraint independent of self-field
- Most precise tests already (0.1%)
- More PK parameter/effects potentially measurable:
 - Measurement of orbital deformation
 - Measurement of aberration
- Measurement of 2nd order PN effects
 - (Lightbending, How do Kepler's laws look like??)
- Moment of inertia & Equation of State

The University of Manchester

Jodrell Bank

Observatory

Finally...

Hopefully, next time that you type "double pulsar" into Google, you get something

different than this:

