OUTFLOWS FROM BLACK HOLE ACCRETION Mitch Begelman

JILA, University of Colorado

THE BOTTOM LINE:

THE EXISTENCE OF OUTFLOWS FROM ACCRETING BLACK HOLES IS GENERIC

BUT THE DETAILS ARE DIVERSE AND SPECIFIC

Owen, Eilek & Kassim 1999

80 kpc

VLA, 327 MHz

www.nrao.edu/~fowen/M87.html

www.nrao.edu/~fowen/M87.html

BAL Outflows in X-ray Absorption

0.544

1.36

$$N_{H} \sim 10^{23} \text{ cm}^{-2}$$

$$\sigma \sim 0.2 \text{ c}$$

$$f_{2} \sim 4\pi/10$$

$$\int_{KE} -0.1 \left(\frac{r_{abs}}{10^{17} \text{ cm}}\right)$$

Chartas et al. 2003

Rest-Frame Energy (keV)

2.72

5.44

E_{abs1}

2

13.66

E_{abs2}

PG1115

5

27.2

(a)

(b).

10

Sound Waves in the Intracluster Medium

Perseus cluster

Unsharp masked Chandra image

M87 + Virgo cluster

Fabian et al. 2003

Forman et al. 2004

THE CLUSTER ENTROPY PROBLEM

- Hierarchical clustering $\longrightarrow L_X \propto T^2$
- Observed: $L_X \propto T^3$ Tropy "floor"
- Need ~ 1 keV/baryon EXTRA during cluster assembly
 - mixing/conduction not enough
- Supernova heating inadequate (?)

SgrA* Bipolar X-Ray Lobes

> Energy range 3.3 - 4.7 keV

Adaptively smoothed, point-sources removed

M. Morris et al. 2003

Lobes are centered on the black hole, and perpendicular to the MW plane

M. Morris et al. 2003

There is also a Sgr A* Jet...

~ 1 pc

F. Baganoff et al. 2003

There is also a Sgr A* Jet...

~ 1 pc

F. Baganoff et al. 2003

F. Baganoff et al. 2003, and in prep. 2005

...with a hard nonthermal spectrum

SS433: Super-Eddington accretion + precessing jets

VLA, 5GHz

Blundell & Bowler 2004

Mioduszewski et al. 2004

WHY ARE BLACK HOLES SUCH FUSSY EATERS?

[CLUE: it's not just accreting black holes.... (cf. WDs, NSs, protostars)]

The culprit: Excess angular momentum, which must be transported outward... by internal torques, or winds

TORQUE TRANSPORTS ENERGY

Angular Momentum Flux: Torque $G \sim \dot{M}\ell$ outward Energy Flux: $G\Omega$ outward

IN A THIN ACCRETION DISK:

2/3 of energy dissipated at R transported from <R by viscous torque

IN A RADIATIVELY INEFFICIENT ACCRETION FLOW (RIAF): Energy Transport: $G\Omega \sim MB$ $B = \frac{v^2}{2} + \Phi + h > 0$ oG 2 **Bernoulli Function**

Energy transport from small R by torque unbinds gas at large R unless radiative efficiency > 2/3

RIAFs are EXPLOSIVE

1 g of gas accreting at r ~ m can liberate 1 kg of gas at r ~ 1000 m

- Torque a "conveyor belt" for liberated energy
- Flow must lose energy OR limit accretion
 Mass loss or circulation
 - Small fraction of supplied mass reaches BH

ADIOS = <u>ADIABATIC INFLOW-OUTFLOW</u> SOLUTION (Blandford & Begelman 99)

• High accretion rate – gas highly opaque, radiates but photons can't escape $\dot{M} > \dot{M}_{Eddington}$

– gas is tenuous, falls into BH before radiating $\dot{M} < \alpha^2 \dot{M}_{Eddington}; \quad \alpha < 1$

High accretion rate - gas highly opaque, radiates but photons can't escape $M > M_{Eddington}$ Low accretion rate Dissipated energy goes mainly into protons Protons-electron thermal coupling weak gas is tenuous, falls into BH before radiating $\dot{M} < \alpha^2 \dot{M}_{Eddington}; \quad \alpha < 1$ • Everything in-between? – Coronae are common

Energy argument is *generic*...

PHYSICALLY, WHAT DRIVES THE OUTFLOW or CIRCULATION?

• Candidate mechanisms:

- magnetic torques, flares
- radiation pressure
- radiative heating

Convection = "minimal" mechanism

 all else being equal, adiabatic flows must be convectively unstable

CONVECTION IN ACCRETION DISKS

- Entropy Gradient – Schwarzschild Criterion
- Ang. Mom. Gradient – Rayleigh Criterion
- Both Gradients

 Høiland Criterion
- MHD
 - MRI, magnetic buoyancy

STRUCTURE OF STABLE (HYDRODYNAMIC) ACCRETION DISKS

At marginal stability: Surfaces of constant S, L, B coincide

Flow is "<u>GYRENTROPIC</u>"

"GYRENTROPIC HYPOTHESIS"

Evolve to marginal stability allowing "rapid" convection along gyrentropes

L, S, B constant

Angular Momentum Energy Entropy

"Viscosity" transports angular momentum "slowly" between gyrentropes

2-D, adiabatic α-model

(time average)

GYRENTROPIC

SPB 99

2-D, adiabatic α-model: ADIOS

Stone, Pringle & Begelman 99

SELF-SIMILAR DISK-WIND MODEL

0.25 0.5 0.75

1

1.25 1.5 1.75

2

Blandford & Begelman 2004

Convection drives meridional circulation...

...which matches onto thermal wind

Blandford & Begelman 2004

ADIOS behavior also in MHD...

Hawley & Balbus 02

...but there are differences

Hawley, Balbus & Stone 01

3-D, adiabatic MHD model

What's Different About MHD?

- No marginal stability: <u>always</u> unstable to MRI So why is there any systematic structure? ("looks like" marginal stability)
- Clue 1: MRI most effective on small scales, convection works best on large scales.
- Clue 2: MRI "winds up" B_{φ} more than B_{pol} , buoyancy of B_{φ} can affect disk structure
- Result? MRI dominates on small scales, but magnetic buoyancy governs overall disk structure...maybe (similar to hydro case, but different details)

Magnetic Høiland Criterion

- 3 quantities to conserve $\leftarrow \mathbf{g}; \nabla L, \nabla S, \nabla \left(\frac{B_{\phi}}{\rho R}\right) \rightarrow$
- No unique marginally stable state
 special case: "Campogyrentropic"
- Modest B_φ can make flow rotate on ~ cylinders
- Does magnetic convection power the outflows?

PHOTON BUBBLE INSTABILITY...

N. Turner et al. 2004

Nonlinear Evolution:

PHOTON BUBBLE SHOCK TRAINS

(Begelman 2001)

PHOTON BUBBLE SHOCK TRAINS

PHOTON BUBBLE SHOCK TRAINS

PHOTON BUBBLE SHOCK TRAINS

SUPER-EDDINGTON ACCRETION DISKS?

Photon bubbles \Rightarrow porous disk \Rightarrow $L > L_E$ possible without blowing disk apart Max. luminosity:

$$\frac{L}{L_E} \sim 40 \left(\frac{\alpha}{0.01}\right) \left(\frac{m}{10}\right)^{1/5} \left(\frac{\xi}{0.1}\right)^{4/5}$$

Near the top of the atmosphere...

- Optical depth must fall
 Weakens density-dependence of flux
 Drives strong wind if super-Eddington ...but...
 - Energetics marginal for dispersing the disk (and regulating L to $\sim L_E$)
 - Requires effective radiation trapping
 - magnetically dominated corona may retain and recycle escaping gas

THE BOTTOM LINE:

THE EXISTENCE OF OUTFLOWS FROM ACCRETING BLACK HOLES IS GENERIC

BUT THE DETAILS ARE DIVERSE AND SPECIFIC