The Effects of Inhomogeneities on the Universe Today

Antonio Riotto INFN, Padova

Plan of the talk

 Short introduction to Inflation Short introduction to cosmological perturbations The influence of perturbations • Dark Energy ? Rocky Kolb (Fermilab/Chicago) Conclusions

Sabino Matarrese (Padova) Alessio Notari (McGill) Enrico Barausse (Sissa, Trieste) hep-ph/0409038, astroph/0410541, in preparation

From Inflation to the observed Universe

Inflation

Inflation

- Inflation is attained when $\frac{\ddot{a}}{a} = H^2 \left(\frac{\dot{H}}{H^2} + 1 \right) > 0$
- If during inflation the Universe suffers a quasi-de Sitter phase $\dot{H} \approx 0$ and $H^2 \approx$ constant
- The scale factor grows exponentially, $a(t) = a(t_{\star}) e^{\int_{t_{\star}}^{t} H(t') dt'} \approx a(t_{\star}) e^{N}$
- $N = \int_{t_{\rm BI}}^{t_{\rm EI}} H(t') dt' \approx H(t_{\rm EI} t_{\rm BI}) =$ number of *e*-foldings

From quantum fluctuations to

the Large Scale Structure

Comoving curvature perturbation

If
$$\delta g_{00} = 2\psi$$
 (the gravitational potential)
 $t \rightarrow t + \delta t$ implies $\psi \rightarrow \psi + H \, \delta t$ and $\delta \phi \rightarrow \delta \phi - \dot{\phi} \delta t$

$$\mathcal{R} = \psi + H \frac{\delta \phi}{\dot{\phi}}$$

Related to the gauge-dependent curvature perturbation ψ on a generic slicing and to inflaton perturbation $\delta \phi$ in that gauge

Power spectrum on superhorizon scales

On super-horizon scales

$$\mathcal{P}_{\mathcal{R}}(k) = \frac{1}{2M_p^2\epsilon} \left(\frac{H}{2\pi}\right)^2 \left(\frac{k}{aH}\right)^{n_{\mathcal{R}}-1}$$

where

$$n_{\mathcal{R}} - 1 = \frac{d \ln \mathcal{P}_{\mathcal{R}}}{d \ln k} = 2\eta - 6\epsilon$$

is the spectral index of curvature perturbations

In our local Universe both short- and long-wavelength modes are present

Evolution of H(z) is a key quantity

- H(z) is the most fundamental dynamical cosmological variable [e.g., all evidence for dark energy comes from evolution of H(z)].
- H(z) in the FLRW (homogeneous/isotropic) model:

$$\begin{cases} G_{00} = \kappa^2 T_{00} \qquad \left(\kappa^2 = 8\pi G_N\right) \\ 3\left(\dot{a}/a\right)^2 \equiv 3H^2 = \kappa^2 \rho \end{cases}$$

- Usual assumption for perturbed FLRW model: An inhomogeneous Universe follows the evolution of a FLRW model of the same average density.
- Issues:
 - gravity is nonlinear
 - gravity is a long-range force

Evolution of H(z) is a key quantity

- H(z) is the most fundamental dynamical cosmological variable [e.g., all evidence for dark energy comes from evolution of H(z)].
- H(z) in the FLRW (homogeneous/isotropic) model:

(FLRW)
$$\begin{cases} G_{00} = \kappa^{2} T_{00} & \left(\kappa^{2} = 8\pi G_{N}\right) \\ 3\left(\dot{a}/a\right)^{2} \equiv 3H^{2} = \kappa^{2}\rho \\ \end{cases}$$
(perturbed FLRW)
$$\begin{cases} G_{\mu\nu}\left(\vec{x},t\right) = G_{\mu\nu}^{\text{FLRW}}\left(t\right) + \delta G_{\mu\nu}\left(\vec{x},t\right) \\ G_{00}^{\text{FLRW}}\left(t\right) + \delta G_{00}\left(\vec{x},t\right) = \kappa^{2} T_{00}\left(\vec{x},t\right) \\ 3\left(\dot{a}/a\right)^{2} = \kappa^{2}\left(\langle\rho\rangle - \kappa^{-2}\langle\delta G_{00}\rangle\right) \end{cases}$$

- Can think of $\kappa^{-2} \langle \delta G_{00} \rangle$ as kinetic energy of the gravitational field. • $(\dot{a}/a)^2 \underline{is not} \kappa^2 \langle \rho \rangle / 3 \equiv H^2$.
- Usual soundbite: $\delta \rho / \rho$ small $\Rightarrow \langle \delta G_{00} \rangle$ small $\Rightarrow \delta H$ small.

Second-order perturbation theory

- Expand energy-momentum tensor and metric tensor to 2nd-order:
 - $T_{\mu\nu} = T_{\mu\nu}^{(0)} + T_{\mu\nu}^{(1)} + T_{\mu\nu}^{(2)}$ $g_{\mu\nu} = g_{\mu\nu}^{(0)} + g_{\mu\nu}^{(1)} + g_{\mu\nu}^{(2)}$ $T_{\mu\nu}^{(0)} \& g_{\mu\nu}^{(0)} \text{ are homogeneous \& isotropic}$
- Einstein tensor to 2nd-order: $G_{\mu\nu} = G^{(0)}_{\mu\nu} + G^{(1)}_{\mu\nu} + G^{(11)}_{\mu\nu} + G^{(2)}_{\mu\nu}$
- In synchronous gauge:

$$\begin{split} \delta g_{ij} &= a^2 \left(\tau \right) \left[-2 \sum_{r=1}^{\infty} \frac{1}{r!} \psi^{(r)} \delta_{ij} + \sum_{r=1}^{\infty} \frac{1}{r!} \left(\partial_i \partial_j \chi^{(r)} + \partial_i \chi^{(r)}_j + \partial_j \chi^{(r)}_i + \chi^{(r)}_{ij} \right) \right] \\ & \left(\partial^i \chi^{(r)}_i = 0; \quad \chi^{i}_{i} \stackrel{(r)}{}_i = 0, \quad \partial^i \chi^{(r)}_{ij} = 0 \right) \end{split}$$

• Metric perturbations in terms of peculiar gravitational potential φ : $\nabla^2 \varphi(\vec{x}) = \frac{\kappa^2}{2} a^2 \rho^{(0)} \left(\delta \rho^{(1)}(\vec{x}) / \rho^{(0)} \right)$

Metric perturbations in a

- φ is the peculiar gravitational potential
- related to $\delta \rho / \rho$ by Poisson equation

$$\nabla^2 \varphi\left(\vec{x}\right) = \frac{\kappa^2}{2} a^2 \rho^{(0)} \frac{\delta \rho^{(1)}\left(\vec{x}\right)}{\rho^{(0)}}$$

$$\Box \psi^{(1)}(\vec{x},\tau) = \frac{5}{3}\varphi(\vec{x}) + \frac{\tau^2}{18}\nabla^2\varphi(\vec{x})$$

$$\Box \psi^{(2)}(\vec{x},\tau) = -\frac{50}{9}\varphi^2(\vec{x}) + \frac{5\tau^2}{18} \left[\varphi^{,k}(\vec{x})\varphi_{,k}(\vec{x}) + \frac{4}{3}\varphi(\vec{x})\nabla^2\varphi(\vec{x})\right]$$

$$+ \frac{\tau^4}{252} \left[\left(\nabla^2\varphi(\vec{x})\right)^2 - \frac{10}{3}\varphi^{,ik}(\vec{x})\varphi_{,ik}(\vec{x})\right]$$

Matter-dominated Universe

Einstein Equations – 2nd order

$$\begin{aligned} G_{\mu\nu}^{(0)} + G_{\mu\nu}^{(1)} + G_{\mu\nu}^{(11)} + G_{\mu\nu}^{(2)} &= \kappa^2 \left(T_{\mu\nu}^{(0)} + T_{\mu\nu}^{(1)} + T_{\mu\nu}^{(2)} \right) \\ \left\langle 00 \right\rangle \colon \quad G_{00}^{(0)} &= \kappa^2 \left\langle T_{00} \right\rangle - \left\langle G_{00}^{(1)} + G_{00}^{(11)} + G_{00}^{(2)} \right\rangle \\ \left. 3 \left(\frac{a'}{a^2} \right)^2 &= \kappa^2 \left\langle \rho \right\rangle - \left\langle G_{00}^{(1)} + G_{00}^{(11)} + G_{00}^{(2)} \right\rangle \end{aligned}$$

- In a perturbed universe $(a'/a^2)^2 = (\dot{a}/a)^2 \frac{is not}{\kappa^2 \langle \rho \rangle / 3}$.
- a'/a^2 does not even describe the physical Hubble flowdescription of Hubble flow comes from evolution of $\langle \rho \rangle$.
- Augment 00 equation with continuity equation: $D_{\mu}T^{\mu0} = 0 \Rightarrow \dot{\rho} = \rho'/a = -\theta\rho$ $\theta \equiv D_{\mu}u^{\mu}$ u^{μ} is the fluid 4-velocity
- Hubble flow described by θ . For FLRW, $\theta = 3H$.

• Hubble flow described by θ :

$$\left\langle \theta \right\rangle = \theta^{(0)} + \left\langle \theta^{(1)} \right\rangle + \left\langle \theta^{(1)} \right\rangle + \left\langle \theta^{(2)} \right\rangle = 3\frac{a'}{a^2} + \left\langle \theta^{(1)} \right\rangle + \left\langle \theta^{(1)} \right\rangle + \left\langle \theta^{(2)} \right\rangle$$

- Einstein equations relate a'/a^2 in terms of ho & $G_{00}^{_{(1)}}$, $G_{00}^{_{(11)}}$, $G_{00}^{_{(2)}}$
- Define a $\delta\theta$: $\frac{\langle \delta\theta \rangle}{3H} = \frac{\langle \theta^{(1)} \rangle + \langle \theta^{(11)} \rangle + \langle \theta^{(2)} \rangle}{3H} - \frac{\langle G_{00}^{(1)} + G_{00}^{(11)} + G_{00}^{(2)} \rangle}{6a^2H^2} - \frac{\langle G_{00}^{(1)} \rangle^2}{72a^4H^4}$
- Notational point: could define $H = (\kappa^2 \langle \rho \rangle / 3)^{1/2}$ or $H = (\alpha^2 \langle a^2 \rangle^{1/2})^{1/2}$

$$H \equiv (\kappa^2 \langle \rho \rangle / 3)^{1/2}$$

- New terms present due to inhomogeneities
- New terms modify expansion
- But expansion does not <u>produce</u> inhomogeneities (although expansion does modify the growth of inhomogeneities)

volume element:
$$\int d^3x \sqrt{\gamma(\tau, \vec{x})}$$
$$\langle \mathcal{O} \rangle(\tau) = \frac{\int d^3x \sqrt{\gamma(\tau, \vec{x})} \mathcal{O}(\tau, \vec{x})}{\int d^3x \sqrt{\gamma(\tau, \vec{x})}}$$
$$\sqrt{\gamma} = 1 + \frac{1}{2} \gamma^{(1)}(\tau, \vec{x}) + \dots = 1 - 3 \psi^{(1)}(\tau, \vec{x}) + \dots = 1 - 5 \varphi(\vec{x}) - \frac{\tau^2}{6} \nabla^2 \varphi(\vec{x}) + \dots$$

$$\left\langle \mathcal{O}^{(0)} \right\rangle = \mathcal{O}^{(0)}$$

$$\left\langle \mathcal{O}^{(1)} \right\rangle = \left\langle \mathcal{O}^{(1)} \right\rangle_{1} - 3 \left\langle \psi^{(1)} \mathcal{O}^{(1)} \right\rangle + 3 \left\langle \psi^{(1)} \right\rangle_{1} \left\langle \mathcal{O}^{(1)} \right\rangle_{1} \qquad \left\langle \mathcal{O}^{(1)} \right\rangle_{1} \equiv \frac{\int d^{3}x \ \mathcal{O}^{(1)}(\tau, \vec{x})}{\int d^{3}x}$$

$$\left\langle \mathcal{O}^{(2)} \right\rangle (\tau) = \frac{\int d^3 x \ \mathcal{O}^{(2)}(\tau, \vec{x})}{\int d^3 x}$$

<u>The Hubble flow – 2nd order</u>

 $\langle \cdots \rangle \equiv V^{-1}(R) \int_{V(R)} (\cdots) dV$

- Averages involve integrals of the form
- Assume Gaussian window function
- Fourier transform of window function

$$dV = 4\pi r^2 e^{-r^2/2R^2} dr \Longrightarrow V(R) = (2\pi)^{3/2} R^3$$

$$W(kR) = V^{-1}(R) \int_{V(R)} e^{-r^2/2R^2} \exp(i\vec{k} \cdot \vec{x}) dV$$

$$=e^{-k^2r^2/2} \rightarrow \begin{cases} 1 & kr \rightarrow 0\\ 0 & kr \rightarrow \infty \end{cases}$$

• "Typical expected value" of $\delta\theta$ in $V(R) \Rightarrow$ ensemble average $\langle ... \rangle$

Crucial point

Must remember the statistical nature of the vacuum fluctuations

Our Universe corresponds to a typical member of the ensemble of possible Universes

• Express φ and its derivatives in terms of Fourier integrals

$$\varphi = \int \frac{d^3k}{\left(2\pi\right)^3} \varphi_{\vec{k}} e^{i\vec{k}\cdot\vec{x}}$$

• φ Gaussian random variable w/ zero mean \Rightarrow N-point functions:

$$\begin{aligned} \overline{\varphi_{\vec{k}_{1}}\varphi_{\vec{k}_{2}}} &= (2\pi)^{3} \,\delta^{3} \left(\vec{k}_{1} + \vec{k}_{2}\right) P_{\varphi}\left(k_{1}\right) \\ \overline{\varphi_{\vec{k}_{1}}\varphi_{\vec{k}_{2}}\varphi_{\vec{k}_{3}}\varphi_{\vec{k}_{4}}} &= (2\pi)^{6} \left[\,\delta^{3} \left(\vec{k}_{1} + \vec{k}_{2}\right) \delta^{3} \left(\vec{k}_{3} + \vec{k}_{4}\right) P_{\varphi}\left(k_{1}\right) P_{\varphi}\left(k_{3}\right) \\ &+ \delta^{3} \left(\vec{k}_{1} + \vec{k}_{3}\right) \delta^{3} \left(\vec{k}_{2} + \vec{k}_{4}\right) P_{\varphi}\left(k_{1}\right) P_{\varphi}\left(k_{2}\right) \\ &+ \delta^{3} \left(\vec{k}_{1} + \vec{k}_{4}\right) \delta^{3} \left(\vec{k}_{2} + \vec{k}_{3}\right) P_{\varphi}\left(k_{1}\right) P_{\varphi}\left(k_{2}\right) \right] \end{aligned}$$

• $P_{\varphi}(k) = |\varphi_k|^2$ is the power spectrum of φ

- Cosmological Poisson equation relates $P_{\phi}(k)$ and $\Delta^2(k,a)$
- $\Delta^2(k,a)$ is the power spectrum of $\delta \rho / \rho$

• Power spectrum of $\delta \rho / \rho$ in terms of $T^2(k)$, the transfer function, and $A \sim 10^{-5}$, a dimensionless amplitude:

 $\Delta^{2}(k,a) = A^{2}\left(\frac{k}{aH}\right)^{4} T^{2}(k)$ Harrison–Zel'dovich spectrum

• For Harrison–Zel'dovich:
$$\Delta^2(k) \rightarrow \begin{cases} k^4 & k \rightarrow 0\\ \ln^2(k) & k \rightarrow \infty \end{cases}$$

• Other spectra, $\Delta^2(k) \rightarrow k^{3+n}$ as $k \rightarrow 0$ (n = 1 for H–Z)

<u>Mean of δθ (present value)</u>

• What we really want is $\delta\theta$ in <u>our</u> Hubble volume

$$\begin{aligned} \operatorname{Var}\left[\left\langle\cdots\right\rangle\right] &\equiv \left(\overline{\left\langle\cdots\right\rangle^{2}}\right) - \left(\overline{\left\langle\cdots\right\rangle}\right)^{2} \\ \left[\frac{\left\langle\delta\theta\right\rangle}{3H}\right]^{2} &= \left[\frac{\left\langle\theta^{(1)}\right\rangle + \left\langle\theta^{(11)}\right\rangle + \left\langle\theta^{(2)}\right\rangle}{3H} - \frac{\left\langle G^{(1)}_{00} + G^{(11)}_{00} + G^{(2)}_{00}\right\rangle}{6a^{2}H^{2}} - \frac{\left\langle G^{(1)}_{00}\right\rangle^{2}}{72a^{4}H^{4}}\right]^{2} \\ &= \left\{\frac{1}{a^{2}H^{2}}\left[-\frac{5}{9}\left(\nabla^{2}\varphi\right)_{1} - \frac{25}{9}\left(\varphi\right)_{1}\left\langle\nabla^{2}\varphi\right)_{1} - \frac{23\tau^{2}}{216}\left\langle\nabla^{2}\varphi\right\rangle_{1}\left\langle\nabla^{2}\varphi\right\rangle_{1} \\ &+ \frac{25}{27}\left(\varphi\nabla^{2}\varphi\right) + \frac{25}{54}\left\langle\varphi^{,i}\varphi_{,i}\right\rangle - \frac{\tau^{2}}{27}\left\langle\nabla^{2}\varphi\nabla^{2}\varphi\right\rangle + \frac{\tau^{2}}{27}\left\langle\varphi^{,ij}\varphi_{,ij}\right\rangle\right]^{2} \end{aligned}$$

$$\operatorname{Var}\left[\left\langle \nabla^{2}\varphi\right\rangle_{1}\right] = \frac{9}{4}a^{4}H^{4}\int_{0}^{\infty}\frac{dk}{k}\Delta^{2}\left(k,a\right)W^{2}\left(kR\right)$$

$$\operatorname{Var}\left[\left\langle \varphi \nabla^{2} \varphi \right\rangle\right] = \left(\frac{9}{8}a^{4}H^{4}\right)^{2} \int_{0}^{\infty} \frac{dk}{k_{1}^{3}} \Delta^{2}\left(k_{1},a\right) \int_{0}^{\infty} \frac{dk}{k_{2}^{3}} \Delta^{2}\left(k_{2},a\right) \left(\frac{k_{1}^{2}}{k_{2}^{2}} + \frac{k_{2}^{2}}{k_{1}^{2}} + 2\right) \times 2W^{2}\left(k_{1}R\right) W^{2}\left(k_{2}R\right)$$

- $W^2(kR)$ acts as a "filter function" regulating ultraviolet ...
- ... <u>but</u> Var[$\langle \varphi \nabla^2 \varphi \rangle$] singular in the infrared if $n \leq 1$!
- as is $Var[\langle \varphi \rangle_1 \langle \nabla^2 \varphi \rangle_1]$
- traces to the infrared behavior of $Var[\langle \varphi \rangle_1]$

<u>Variance of δθ – infrared nature</u>

$$\operatorname{Var}\left[\left\langle\varphi\right\rangle_{1}\right] = \frac{9}{4}a^{4}H^{4}\int_{0}^{\infty}\frac{dk}{k^{5}}\Delta^{2}\left(k,a\right)W^{2}\left(kR\right) \qquad \overline{\left\langle\varphi\right\rangle_{1}} = 0$$

$$\operatorname{Var}\left[\left\langle \nabla^{2}\varphi\right\rangle_{1}\right] = \frac{9}{4}a^{4}H^{4}\int_{0}^{\infty}\frac{dk}{k}\Delta^{2}\left(k,a\right)W^{2}\left(kR\right) \qquad \overline{\left\langle \nabla^{2}\varphi\right\rangle_{1}} = 0$$

• Interested in $R = R_H$

• For $k < k_H : W(kR_H) \to 1$ and $T^2(k) \to 1$, so $\Delta^2(k,a)W^2(kR) \to k^{3+n}$ $\operatorname{Var}\left[\left\langle \varphi \right\rangle_1\right]_{IR} \to \int_0^{k_H} \frac{dk}{k^5} k^{3+n}$ $\operatorname{Var}\left[\left\langle \nabla^2 \varphi \right\rangle_1\right]_{IR} \to \int_0^{k_H} \frac{dk}{k} k^{3+n}$ $\operatorname{Var}\left[\left\langle \varphi \nabla^2 \varphi \right\rangle_1\right]_{IR} \to \int_0^{k_H} \frac{dk_1}{k_1^5} k_1^{3+n} \int_0^{k_H} \frac{dk_2}{k_2} k_2^{3+n} = \operatorname{Var}\left[\left\langle \varphi \right\rangle_1\right]_{IR} \operatorname{Var}\left[\left\langle \nabla^2 \varphi \right\rangle_1\right]_{IR}$

How to make sense of infrared singularity?

- 1. variance is infrared finite-bluer than Harrison-Zel'dovich
- 2. somehow infrared singular terms cancel
- 3. physical cutoff at Hubble radius: $k_{\text{MIN}} = k_H$

 k^4 scales as $(1+z)^{-2}$; k^2 scales as $(1+z)^{-1}$

How to make sense of infrared singularity?

- 1. variance is infrared finite $(\delta \rho / \rho \text{ bluer than } n = 1 \text{ as } k \rightarrow 0)$
- 2. somehow infrared-singular terms cancel
- 3. physical cutoff at Hubble radius: $k_{\text{MIN}} = k_H$
- use cutoff determined by duration of inflation (sensitive to unknown nature of perturbations on scales greater than the Hubble radius)

• What we really want is $\delta\theta$ in our Hubble volume

How to make sense of infrared singularity?

- 1. variance is infrared finite-bluer than Harrison-Zel'dovich
- 2. somehow infrared singular terms cancel
- 3. introduce cutoff at Hubble radius: $k_{\text{MIN}} = k_H$
- 4. use cutoff determined by duration of inflation (sensitive to unknown nature of perturbations on scales greater than the Hubble radius)

Are super–Hubble perturbations physical?

- constant φ can be scaled out equations ...
- ... but can't get rid of $\varphi \nabla^2 \varphi$!
- could Var[$\delta\theta$] be large enough to give $\langle \delta\theta \rangle/3H \sim O(1)$?

Crucial technical points

•
$$\frac{\delta \rho}{\rho} \propto \nabla^2 \varphi \longrightarrow$$
 on superhorizon scales density perturbs are perturbative

may go beyond second-order

E.W. Kolb, S. Matarrese, A. Notari and A.R., astroph/0410541

Entertaining conjecture

Distance-luminosity relation

 $F = \frac{L}{4\pi d_L^2}$ defines luminosity distance - "know" L, measure F

 $4\pi d_L^2$ = area of ²S centered on source at time of detection, t_0

$$ds^{2} = dt^{2} - a^{2}(t) \left(\frac{dr^{2}}{1 - kr^{2}} + r^{2} d\Omega^{2} \right) \Rightarrow \text{Area} = 4\pi a^{2}(t_{0})r^{2}$$

Conservation of energy: flux redshifted: $(1+z)^2 = [a(t_0)/a(t_1)]^2$

redshift of energy × redshift of time interval: $(1+z)^2$

$$F = \frac{L}{4\pi a^2(t_0)r^2(1+z)^2} \quad \Rightarrow \quad d_L = a(t_0)r(1+z)$$

light from comoving coordinate *r* reaches us now redshifted by an amount $(1+z) = a(t_0)/a(t)$

$$\begin{aligned} \underbrace{d_{L} = a(t_{0})r(1+z)}_{d_{L} = a(t_{0})r(1+z)} & ds^{2} = dt^{2} - a^{2}(t) \left(\frac{dr^{2}}{1-kr^{2}} + r^{2}d\Omega^{2}\right) \\ \text{light travels on geodesics}_{ds^{2} = 0} & \int \frac{dr}{\sqrt{1-kr^{2}}} = \int \frac{dt}{a(t)} = \int \frac{da}{H(a)a^{2}} \\ H^{2} = H_{0}^{2} \left[(1 - \Omega_{\text{TOTAL}})(1+z)^{2} + \Omega_{M}(1+z)^{3} + ... \right] \\ \Omega_{i} = \rho_{i} / \left(3H_{0}^{2} / 8\pi G \right) \\ \Omega_{\text{TOTAL}} = \Omega_{M} + \Omega_{\Lambda} + \Omega_{R} + \Omega_{w} + ... \quad (1 - \Omega_{\text{TOTAL}}) \propto k \\ \int_{0}^{r} \frac{dr'}{\sqrt{1-kr'^{2}}} = \int_{0}^{z} \frac{a^{-1}(t_{0})H_{0}^{-1}}{\sqrt{(1 - \Omega_{0})(1+z')^{2}} + \Omega_{M}(1+z')^{3} + \Omega_{w}(1+z')^{3(1+w)} + ...} \end{aligned}$$

$$d_L = a(t_0) r (1+z)$$

$$a(t_0)r \text{ from } \int_0^r \frac{dr'}{\sqrt{1 - kr'^2}} = \int_0^z \frac{a^{-1}(t_0)H_0^{-1}}{\sqrt{(1 - \Omega_{\text{TOTAL}})(1 + z')^2 + \Omega_M(1 + z')^3 + \dots}}$$

Example: matter + lambda $\implies \Omega_{\text{TOTAL}} = \Omega_M + \Omega_\Lambda$

Program:

- measure d_L (via $d_L^2 = L/4\pi F$) and Z
- input Ω_i and calculate $a(t_0)r$

$$\begin{array}{c} H_0 d_L = z + O(z^2) \\ \Omega_i \downarrow \end{array}$$

Unperturbed Universe

$$q_0 = \frac{\Omega_0}{2} + \frac{3}{2} \sum_i w_i \Omega_i$$

Acceleration implies a fluid with negative pressure Dark Energy

 $d\hat{s}^{2} = a(\eta)^{2} ds^{2} = \hat{g}_{\mu\nu} dx^{\mu} dx^{\nu} = a(\eta)^{2} g_{\mu\nu} dx^{\mu} dx^{\nu} , \qquad x^{\mu} = (\eta, x^{i})$

$$\hat{k}^{\mu}\hat{k}_{\mu} = 0, \qquad \hat{k}^{\nu}\hat{\nabla}_{\nu}\hat{k}^{\mu} = \frac{d^{2}x^{\mu}}{dv^{2}} + \hat{\Gamma}^{\mu}_{\alpha\beta}\frac{dx^{\alpha}}{dv}\frac{dx^{\beta}}{dv} = 0$$
Photon equations

$\hat{\theta}$ expansion of the null congruence along the photon trajectory

$$d\lambda := a^{-2} dv$$

$$\frac{d\theta}{d\lambda} = -R_{\mu\nu}k^{\mu}k^{\nu} - \frac{\theta^2}{2} - 2|\sigma|^2$$

$$|\sigma| = \sqrt{\frac{1}{2} \left[k_{(\mu;\nu)} k^{(\mu;\nu)} - \frac{\theta^2}{2} \right]}$$

$$\ell = \sqrt{\hat{h}_{\mu\nu}} \left(\hat{u}_{\sigma} \hat{T}^{\sigma\mu} \right) \left(\hat{u}_{\delta} \hat{T}^{\delta\nu} \right) = A^2 \omega^2$$

Energy flux per unit surface measured by an observer with four-velocity \hat{u}_{μ}

$$\hat{h}_{\mu\nu} = \hat{g}_{\mu\nu} + \hat{u}_{\mu}\hat{u}_{\nu} , \qquad \omega = -\hat{u}_{\mu}\hat{k}^{\mu}$$

 $\begin{aligned} \textbf{Distance-redshift relation} \\ \textbf{in a perturbed Universe} \\ d_L &= \frac{c}{\tilde{H}_0} \left[z + \frac{z^2}{2} \left(1 - \tilde{q}_0 \right) + O\left(z^3\right) \right] \end{aligned}$

$$\langle \widetilde{H}_0 \rangle_{\Omega} = H_0 \left[1 - \frac{2}{H_0} \left(\frac{1}{2} \phi_{(1)}' + \frac{1}{4} \phi_{(2)}' + \phi_{(1)} \phi_{(1)}' + \frac{1}{30} \left(\chi_{(1)}^{ij} \right)' \chi_{(1)ij} \right) \right]$$

$$\begin{split} \langle \tilde{q}_{0} \rangle_{\Omega} &= \frac{1}{2} \bigg[1 + \frac{2}{H_{0}} \bigg(2\phi_{(1)}' + \phi_{(2)}' + 4\phi_{(1)}\phi_{(1)}' + \frac{2}{15} \left(\chi_{(1)}^{ij} \right)' \chi_{(1)ij} \bigg) \\ &+ \left(\frac{2}{H_{0}} \right)^{2} \left(\frac{1}{2} \phi_{(1)}'' + \frac{1}{4} \phi_{(2)}'' + \frac{9}{4} \left(\phi_{(1)}' \right)^{2} + \phi_{(1)} \phi_{(1)}'' + \frac{7}{40} \left(\chi_{(1)ij} \right)' \left(\chi_{(1)}^{ij} \right)' + \frac{1}{30} \left(\chi_{(1)}^{ij} \right)'' \chi_{(1)ij} \bigg) \\ &+ \left(\frac{2}{H_{0}} \right)^{3} \left(\frac{1}{2} \phi_{(1)}' \phi_{(1)}'' + \frac{1}{60} \left(\chi_{(1)ij} \right)' \left(\chi_{(1)}^{ij} \right)'' \right) \bigg] \\ &= \left(-\frac{1}{H_{0}} \right) \langle - \rangle_{\Omega} := \frac{1}{H_{0}} \int d\Omega \end{split}$$

 4π J

$$\begin{split} \langle \widetilde{H}_0 \rangle_{\Omega} &= H_0 \left[1 - \left(\frac{1}{18} \nabla^2 \varphi - \frac{5}{108} \left(\nabla \varphi \right)^2 + \frac{5}{27} \varphi \nabla^2 \varphi \right) \left(\frac{2}{H_0} \right)^2 + \frac{1}{3780} \left(22 \varphi^{,ij} \varphi_{,ij} - 29 \left(\nabla^2 \varphi \right)^2 \right) \left(\frac{2}{H_0} \right)^4 \right] \\ \langle \widetilde{q}_0 \rangle_{\Omega} &= \frac{1}{2} \left[1 + \left(\frac{5}{18} \nabla^2 \varphi + \frac{25}{27} \varphi \nabla^2 \varphi - \frac{25}{108} \left(\nabla \varphi \right)^2 \right) \left(\frac{2}{H_0} \right)^2 + \frac{1}{135} \left(7 \left(\nabla^2 \varphi \right)^2 + 4 \varphi^{,ij} \varphi_{,ij} \right) \left(\frac{2}{H_0} \right)^4 \right] \end{split}$$

- The Hubble parameter and the deceleration parameter are not deterministic
- Because of the statistical nature of vacuum fluctuations, the gravitational potential does not have well-defined values
- The theoretical predictions of the cosmological parameters come with a nonvanishing cosmological variance implying an intrinsic theoretical error

Variance of q

Are super–Hubble perturbations physical?

Constant φ can be scaled out of equations

... but can't get rid of $\varphi \nabla^2 \varphi$!

• What we really want is q in our Hubble volume

$$\operatorname{Var}\left[\varphi\nabla^{2}\varphi\right] \simeq \left(\frac{9}{4}a_{0}^{4}H_{0}^{4}\right)^{2} \int \frac{dk_{1}}{k_{1}}\Delta^{2}(k_{1},a_{0}) \int \frac{dk_{2}}{k_{2}^{5}}\Delta^{2}(k_{2},a_{0})$$
for a flat spectrum, n=1
$$\frac{\sqrt{\operatorname{Var}\left[\langle \widetilde{q} \rangle_{\Omega}\right]}}{q_{0}} \simeq 10^{-10} \ln \frac{k_{\mathrm{MAX}}}{k_{\mathrm{MIN}}} \simeq 1 \qquad (10^{18.8} \ e\text{-folds!})$$

$$\Delta^2(k) \propto k^{3+n}$$
 with $0 < (1-n) \ll 1$
 $n = 0.94 \sim 700$ e-folds

The Universe accelerates

Dark Energy is present

or

It is matter-dominated and the value of deceleration parameter predicted by the theory at the unperturbed level comes with a large cosmological variance: negative values of q are allowed

Conclusions

Inflation generates long wavelength perturbations
Super-Hubble modes introduce intrinsic theoretical errors
New effects to study
No need of Dark Energy?