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From From Inflation to theInflation to the
observed Universeobserved Universe



Inflation Inflation 



Inflation Inflation 



our 
Hubble
volume

our 
inflation
volume

N ≈ 60

1
0
−≈ HN

I eH 1−≈ size
size



our 
inflation
volume

N>>60

our 
Hubble
volume



From quantum fluctuations toFrom quantum fluctuations to

the Large Scale Structure the Large Scale Structure 





Comoving curvature perturbationComoving curvature perturbation



Power spectrum on superhorizon scalesPower spectrum on superhorizon scales



In our  local Universe both shortIn our  local Universe both short-- andand
longlong--wavelength modes are present wavelength modes are present 



Evolution of H(z) is a key quantityEvolution of Evolution of HH((zz)) is a key quantityis a key quantity
• H(z) is the most fundamental dynamical cosmological variable
• [e.g., all evidence for dark energy comes from evolution of H(z)].
• H(z) in the FLRW (homogeneous/isotropic) model:
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• Usual assumption for perturbed FLRW model: 
An inhomogeneous Universe follows the evolution 
of a FLRW model of the same average density. 

• Issues: 
– gravity is nonlinear
– gravity is a long-range force



Evolution of H(z) is a key quantityEvolution of Evolution of HH((zz)) is a key quantityis a key quantity
• H(z) is the most fundamental dynamical cosmological variable
• [e.g., all evidence for dark energy comes from evolution of H(z)].
• H(z) in the FLRW (homogeneous/isotropic) model:
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(perturbed FLRW)

• Can think of κ −2〈δ G00〉 as kinetic energy of the gravitational field.
• (a/a)2 is not κ 2〈ρ〉/3 ≡ H2.

.

• Usual soundbite: δρ/ρ small ⇒ 〈δ G00〉 small ⇒ δH small.



Second-order perturbation theorySecondSecond--order perturbation theoryorder perturbation theory

(0) (1) (11) (2)G G G G Gµν µν µν µν µν= + + +
• Einstein tensor to 2nd-order:
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• Expand energy-momentum tensor and metric tensor to 2nd-order:

&        are homogeneous & isotropic(0)Tµν
(0)gµν
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• In synchronous gauge:

• Metric perturbations in terms of peculiar gravitational potential ϕ :
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Metric perturbations in a Metric perturbations Metric perturbations in a in a 
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• ϕ is the peculiar gravitational potential
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• related to δρ/ρ by Poisson equation

Matter-dominated UniverseMatterMatter--dominated Universedominated Universe



Einstein Equations – 2nd orderEinstein Equations Einstein Equations –– 22ndnd orderorder
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• a′/a2 does not even describe the physical Hubble flow–
• description of Hubble flow comes from evolution of 〈ρ〉.

• Hubble flow described by θ.  For FLRW, θ = 3H. 

• Augment 00 equation with continuity equation:
DµT µ0 = 0 ⇒ ρ = ρ ′/a = −θρ
θ ≡ Dµuµ uµ is the fluid 4-velocity

.

• In a perturbed universe (a′/a2)2 = (a/a)2 is not κ 2〈ρ〉/3 ..



The Hubble flow – 2nd orderThe Hubble flow The Hubble flow –– 22ndnd orderorder
• Hubble flow described by θ :
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• Define a δθ :

• Einstein equations relate a′/a2 in terms of ρ & (1) (11) ( 2)
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• Notational point: could define H = (κ 2〈ρ〉/3)1/2 or  H = (a′/a2)1/2

H ≡ (κ 2〈ρ〉/3)1/2



It is not a backreactionIt isIt is not a not a backreactionbackreaction
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• New terms present due to inhomogeneities

• New terms modify expansion

• But expansion does not produce inhomogeneities
• (although expansion does modify the growth of inhomogeneities)



〈…〉:  Averaging〈〈……〉〉:  :  AveragingAveraging
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Averages involve 
integrals of the form ( )1
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The Hubble flow – 2nd orderThe Hubble flow The Hubble flow –– 22ndnd orderorder
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Mean of δθMean of Mean of δθδθ
• “Typical expected value” of δθ in V(R) ⇒ ensemble average 〈…〉
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Crucial pointCrucial point

Must remember the statistical natureMust remember the statistical nature
of the vacuum fluctuations of the vacuum fluctuations 

Our Universe corresponds to a typicalOur Universe corresponds to a typical
member of the ensemble of possiblemember of the ensemble of possible

Universes Universes 



Mean of δθMean of Mean of δθδθ
• Express ϕ and its derivatives in terms of Fourier integrals
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• ϕ Gaussian random variable w/ zero mean ⇒ N-point functions:

• Pϕ(k) = |ϕk|2 is the power spectrum of ϕ
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• Cosmological Poisson equation relates Pϕ(k) and ∆2(k,a)

• ∆2(k,a) is the power spectrum of δρ/ρ



∆2(k,a)∆∆22((k,ak,a))
• Power spectrum of δρ/ρ in terms of T2(k), the transfer function,
• and A ∼ 10−5, a dimensionless amplitude:
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Harrison–Zel’dovich spectrum

• For Harrison–Zel’dovich:
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• Other spectra, ∆2(k) → k3+n as k → 0 (n = 1 for H–Z)



Mean of δθ (present value)Mean of Mean of δθδθ (present value)(present value)

scales as (1+z)−1
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Variance of δθVariance of Variance of δθδθ
• What we really want is δθ in our Hubble volume
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Variance of δθVariance of Variance of δθδθ
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Variance of δθ – sample termsVariance of Variance of δθδθ –– sample termssample terms
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• W 2 (kR) acts as a “filter function” regulating ultraviolet …

• … but Var[〈ϕ∇2ϕ〉] singular in the infrared if n ≤ 1!

• as is Var[〈ϕ〉1〈∇2ϕ〉1] 

• traces to the infrared behavior of Var[〈ϕ〉1]



Variance of δθ – infrared natureVariance ofVariance of δθδθ –– infrared natureinfrared nature
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Variance of δθVariance of Variance of δθδθ
How to make sense of infrared singularity?

1. variance is infrared finite–bluer than Harrison-Zel’dovich
2. somehow infrared singular terms cancel
3. physical cutoff at Hubble radius:  kMIN = kH



Variance of δθVariance of Variance of δθδθ

cutoff at k=kH
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k4 scales as (1+z)−2; k2 scales as (1+z)−1



Variance of δθVariance of Variance of δθδθ
How to make sense of infrared singularity?

1. variance is infrared finite (δρ/ρ bluer than n = 1 as k → 0)
2. somehow infrared-singular terms cancel
3. physical cutoff at Hubble radius:  kMIN = kH

4. use cutoff determined by duration of inflation
(sensitive to unknown nature of perturbations
on scales greater than the Hubble radius)



Variance of δθVariance of Variance of δθδθ
• What we really want is δθ in our Hubble volume
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infrared cutoff at k = kMIN

kMIN related to # of e-folds of inflation



Variance of δθVariance of Variance of δθδθ
How to make sense of infrared singularity?

1. variance is infrared finite–bluer than Harrison-Zel’dovich
2. somehow infrared singular terms cancel
3. introduce cutoff at Hubble radius:  kMIN = kH

4. use cutoff determined by duration of inflation
(sensitive to unknown nature of perturbations
on scales greater than the Hubble radius)

Are super–Hubble perturbations physical?

• constant ϕ can be scaled out equations …
• … but can’t get rid of ϕ∇2ϕ !

• could Var[δθ ] be large enough to give 〈δθ 〉/3H ∼ O(1)?



Crucial technical pointsCrucial technical points

ϕ
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on superhorizon scaleson superhorizon scales
density perturbs aredensity perturbs are

perturbative   perturbative   

comes from comes from 

may go beyond secondmay go beyond second--order   order   
E.W. Kolb, S. Matarrese, A. Notari and A.R., 
astroph/0410541



Entertaining conjectureEntertaining conjectureEntertaining conjecture













Unperturbed UniverseUnperturbed Universe

ii iwq Ω+
Ω
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Acceleration implies a fluidAcceleration implies a fluid
with negative pressure with negative pressure 

DarkDark EnergyEnergy



DistanceDistance--redshiftredshift relationrelation
inin a perturbeda perturbed UniverseUniverse

E. Barausse, S. Matarrese and A.R., 
In preparation



DistanceDistance--redshift relationredshift relation
in a perturbed Universein a perturbed Universe

0=λobserver

sλλ =

0=µ
µkk 0=∇ µ

ν
ν kk

photon
momentum

source



DistanceDistance--redshift relationredshift relation
in a perturbed Universein a perturbed Universe

energy momentum tensorenergy momentum tensor

Photon equationsPhoton equations



expansion of the null congruence alongexpansion of the null congruence along
the photon trajectory the photon trajectory 



ShearShear



DistanceDistance--redshift relationredshift relation
in a perturbed Universein a perturbed Universe

Energy flux  per unit surface measured Energy flux  per unit surface measured 
by an observer with fourby an observer with four--velocity velocity 



DistanceDistance--redshift relationredshift relation
in a perturbed Universein a perturbed Universe



DistanceDistance--redshift relationredshift relation
in a perturbed Universein a perturbed Universe



DistanceDistance--redshift relationredshift relation
in a perturbed Universein a perturbed Universe



Crucial aspectsCrucial aspects
• The Hubble parameter and the 

deceleration parameter are not 
deterministic

• Because of the statistical nature of 
vacuum fluctuations, the gravitational 
potential does not have well-defined 
values

• The theoretical predictions of the 
cosmological parameters come with a 
nonvanishing cosmological variance 
implying an intrinsic theoretical error



Variance of qVariance of Variance of qq

Are super–Hubble perturbations physical?

Constant ϕ can be scaled 
out of equations

...but can’t get rid of ϕ∇2ϕ !



Variance of qVariance Variance of qof q
• What we really want is q in our Hubble volume
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infrared cutoff at k = kMIN

kMIN related to # of e-folds of inflation



for a flat spectrum, n=1for a flat spectrum, n=1



The Universe accelerates The Universe accelerates 

Dark Energy is presentDark Energy is present

It is matterIt is matter--dominated and the value of dominated and the value of 
deceleration parameter predicted by thedeceleration parameter predicted by the
theory at the unperturbed level comestheory at the unperturbed level comes

with a large cosmological variance: with a large cosmological variance: 
negative  values of q are allowed 

oror

negative  values of q are allowed 





DecelerationDeceleration
parameter parameter 
CosmicCosmic
Variance  Variance  



Conclusions

•• Inflation generates long wavelength Inflation generates long wavelength 
perturbationsperturbations

•• SuperSuper--Hubble modes introduce Hubble modes introduce 
intrinsic theoretical errorsintrinsic theoretical errors

•• New effects to studyNew effects to study
•• No need of Dark Energy?No need of Dark Energy?
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