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Recent advances in understanding of magnetohydrodynamic (MHD) turbulence call for revisions in the picture
of cosmic ray transport. In this paper we use recently obtained scaling laws for MHD modes to obtain the
scattering frequency for cosmic rays. We account for the turbulence cutoff arising from both collisional and
collisionless damping. We obtain the scattering rate and show that fast modes provide the dominant contribution
to cosmic ray scattering for the typical interstellar conditions in spite of the fact that fast modes are subjected
to damping. We determine how the efficiency of the scattering depends on the characteristics of ionized media,
e.g. plasma β. We show that streaming instability is suppressed by the ambient MHD turbulence.

1. Introduction

This field is

Although cosmic ray
diffusion can happen while cosmic rays follow wander-
ing magnetic fields ([14]), the acceleration of cosmic
rays requires efficient scattering. For instance, scat-
tering of cosmic rays back into the shock is a vital
component of the first order Fermi acceleration.

While most investigations are restricted to Alfvén
modes propagating along an external magnetic field
(the so-called slab model of Alfvénic turbulence),
obliquely propagating MHD modes have been in-
cluded in [17] and later studies [25]. A more com-
plex models were obtained by combining the results of
the Reduced MHD with parallel slab-like modes have
been also considered [3]. Here we attempt to use mod-
els that are motivated by the recent studies of MHD
turbulence ([12], see [8] for a review and references
therein).

The efficiency of scattering depends on turbulence
anisotropy [20]. Therefore the calculations of CR scat-
tering must be done using a realistic MHD turbu-
lence model. An important attempt in this direction
was carried out in [6]. However, only incompressible
motions were considered. On the contrary, ISM is
highly compressible. Compressible MHD turbulence
has been studied recently (see review by [10] and ref-
erences therein). [28] addressed the scattering by fast
modes. But they did not consider the damping, which
is essential for fast modes. In this paper we include

modes.

2. MHD turbulence and its damping

2.1. Model of MHD turbulence

Analogous to MHD perturbations that can be de-
composed into Alfvénic, slow and fast waves with well-
defined dispersion relations, MHD perturbations that
characterize turbulence can be separated into distinct
modes. The separation into Alfvén and pseudo-Alfvén
modes, which are the incompressible limit of slow
modes, is an essential element of the GS95 [12] model.
Even in a compressible medium, MHD turbulence is
not an inseparable mess in spite of the fact that MHD
turbulence is a highly non-linear phenomenon [9, 21].
The actual decomposition of MHD turbulence into
Alfvén, slow and fast modes was addressed in [9, 10],
who used a statistical procedure of decomposition in
the Fourier space, where the basis of the Alfvén, slow
and fast perturbations was defined.

Unlike hydrodynamic turbulence, Alfvénic one is
anisotropic, with eddies elongated along the magnetic
field. On the intuitive level it can be explained as
the result of the following fact: it is easier to mix
the magnetic field lines perpendicular to the direction
of the magnetic field rather than to bend them. How-
ever, one cannot do mixing in the perpendicular direc-
tion to very small scales without affecting the parallel
scales. This is probably the major difference between
the adopted model of Alfvénic perturbations and the
Reduced MHD [4]. In the GS95 model as well as in its
generalizations for compressible medium mixing mo-
tions induce the reductions of the scales of the parallel
perturbations.

The corresponding scaling can be easily obtained.
For instance, calculations in [7] prove that motions
perpendicular to magnetic field lines are essentially
hydrodynamic. As the result, energy transfer rate due
to those motions is constant Ėk ∼ v2

k/τk, where τk is
the energy eddy turnover time ∼ (vkk⊥)−1, where k⊥
is the perpendicular component of the wave vector
k. The mixing motions couple to the wave-like mo-
tions parallel to magnetic field giving a critical balance
condition, i.e., k⊥vk ∼ k‖VA, where k‖ is the paral-
lel component of the wave vector k, VA is the Alfvén

by their interaction with magnetic field.
turbulent and therefore, the resonant interaction of
cosmic rays with MHD turbulence has been discussed
by many authors as the principal mechanism to scat-
ter and isotropize cosmic rays.

various damping processes which can affect the fast

The propagation of cosmic rays (CRs) is affected
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speed1. From these arguments, the scale dependent
anisotropy k‖ ∝ k

2/3
⊥ and a Kolmogorov-like spectrum

for the perpendicular motions vk ∝ k−1/3 can be ob-
tained [19].

It was conjectured in [21] that GS95 scaling should
be approximately true for Alfvén and slow modes in
moderately compressible plasma. For magnetically
dominated, the so-called low β plasma, [9] showed
that the coupling of Alfvénic and compressible modes
is weak and that the Alfvénic and slow modes follow
the GS95 spectrum. This is consistent with the anal-
ysis of HI velocity statistics [18, 29] as well as with
the electron density statistics [2]. Calculations in [10]
demonstrated that fast modes are marginally affected
by Alfvén modes and follow acoustic cascade in both
high and low β medium. In what follows, we consider
both Alfvén modes and compressible modes and use
the description of those modes obtained in [9, 10] to
study CR scattering by MHD turbulence.

2.2. Damping of Turbulence

In many earlier papers Alfvénic turbulence was con-
sidered by many authors as the default model of inter-
stellar magnetic turbulence. This was partially moti-
vated by the fact that unlike compressible modes, the
Alfvén ones are essentially free of damping in fully ion-
ized medium2. However, it was shown that compress-
ible fast modes are particularly important for cosmic
ray scattering [31, 33]. For them damping is essential.

At small scales turbulence spectrum is altered by
damping. Various processes can damp the MHD mo-
tions (see [33] for details). In partially ionized plasma,
the ion-neutral collisions are the dominant damp-
ing process. In fully ionized plasma, there are basi-
cally two kinds of damping: collisional or collisionless
damping. Their relative importance depends on the
mean free path in the medium. If the wavelength is
larger than the mean free path, viscous damping dom-
inates. If, on the other hand, the wavelength is smaller
than mean free path, then the plasma is in the colli-
sionless regime and collisionless damping is dominant.

To obtain the truncation scale, the damping time
Γ−1

d should be compared to the cascading time τk.
As we mentioned earlier, the Alfvénic turbulence cas-
cades over one eddy turn over time (k⊥vk)−1 ∼

1note that the linear dispersion relation is used for Alfvén
modes.

2This picture contradicts to an erroneous assumption of
strong coupling of compressible and incompressible MHD
modes that still percolates the literature on turbulent star for-
mation (see discussion in [15]). However, little cross talk be-
tween the different astrophysical communities allowed these two
different pictures to coexist peacefully.

Figure 1: Damping scale vs. the angle θ between k and
B in halo, HIM and WIM. The peak on the curve of HIM
(dashdot line) is smeared out by randomization of both k
and B [33].

(k‖VA)−1. The cascade of fast modes takes a bit
longer:

τk = ω/k2v2
k = (k/L)−1/2 × Vph/V 2,

where V is the turbulence velocity at the injection
scale, Vph is is the phase speed of fast modes and
equal to Alfvén and sound velocity for high and low β
plasma, respectively [9]. If the damping is faster than
the turbulence cascade, the turbulence gets truncated.
Otherwise, for the sake of simplicity, we ignore the
damping and assume that the turbulence cascade is
unaffected. As the transfer of energy between Alfvén,
slow and fast modes of MHD turbulence is suppressed
at the scales less than the injection scale, we consider
different components of MHD cascade independently.

We get the cutoff scale kc by equating the damping
rate and cascading rate τkΓd � 1. Then we check
whether it is self-consistent by comparing the kc with
the relevant scales, e.g., injection scale, mean free path
and the ion gyro-scale.

Damping is, in general, anisotropic, i.e., the linear
damping (see [33] Appendix A) depends on the angle
θ between the wave vector k and local direction of
magnetic field B. Unless randomization of θ is com-
parable to the cascading rate the damping scale gets
angle-dependent3. The angle θ varies because of both
the randomization of wave vector k and the wander-
ing of magnetic field lines ( see[33] for detail). With
this input at hand, one can determine the turbulence
damping scales given a medium.

3The fast increase of collisionless damping with θ was ap-
plied to rotating stars, where [30] showed that the collisionless
damping can be a dominant heating source for stellar wind.
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3. Interactions between turbulence and
particles

Basically there are two types of resonant interac-
tions: gyroresonance acceleration and transit accel-
eration (henceforth TTD). The resonant condition is
ω − k‖vµ = nΩ (n = 0,±1, 2...), where ω is the wave
frequency, Ω = Ω0/γ is the gyrofrequency of relativis-
tic particle, µ = cos ξ, where ξ is the pitch angle of
particles. TTD formally corresponds to n = 0 and it
requires compressible perturbations.

We employ quasi-linear theory (QLT) to obtain our
estimates. If mean magnetic field is larger than the
fluctuations at the injection scale, we may say that the
QLT treatment we employ defines parallel diffusion.
Taking into account only the dominant interaction at
n = ±1, we obtain the Fokker-Planck coefficients (see
also [27, 33]),

(
Dµµ

Dpp

)
=

πΩ2(1 − µ2)
2

∫ kmax

kmin

dk3δ(k‖v‖ − ω ± Ω)

[ (
1 + µVph

vζ

)2

m2V 2
A

]{
(J2

2 (
k⊥v⊥

Ω
) + J2

0 (
k⊥v⊥

Ω
))

[
MRR(k) + MLL(k)
KRR(k) + KLL(k)

]
− 2J2(

k⊥v⊥
Ω

)J0(
k⊥v⊥

Ω
)[

ei2φ

[
MRL(k)
KRL(k)

]
+ e−i2φ

[
MLR(k)
KLR(k)

]]}
,(1)

where ζ = 1 for Alfvén modes and ζ = k‖/k for fast
modes, kmin = L−1, kmax = Ω0/vth corresponds to
the dissipation scale, m = γmH is the relativistic mass
of the proton, v⊥ is the particle’s velocity component
perpendicular to B0, φ = arctan(ky/kx), L,R = (x ±
iy)/

√
2 represent left and right hand polarization.

The delta function δ(k‖v‖ − ω + nΩ) approxima-
tion to real interaction is true when magnetic pertur-
bations can be considered static4 . For cosmic rays,
k‖v‖ � ω so that the resonant condition is essentially
k‖vµ − nΩ = 0. From this resonance condition, we
know that the most important interaction occurs at
k‖ = k‖,res = Ω/v‖. This is generally true except for
small µ (or scattering near 90o).

4. Scattering of cosmic rays

4.1. Scattering by Alfvénic turbulence

As we discussed above, Alfvén modes are
anisotropic, eddies are elongated along the magnetic

4Cosmic rays have such high velocities that the slow varia-
tion of the magnetic field with time can be neglected.

field, i.e., k⊥ > k‖. The scattering of CRs by Alfvén
modes is suppressed first because most turbulent en-
ergy goes to k⊥ due to the anisotropy of the Alfvénic
turbulence so that there is much less energy left in
the resonance point k‖,res = Ω/v‖ ∼ r−1

L . Further-
more, k⊥ � k‖ means k⊥ � r−1

L so that cosmic ray
particles have to be interacting with lots of eddies in
one gyro period. This random walk substantially de-
creases the scattering efficiency. The scattering by re-
alistic Alfvénic turbulence was studied in [31]. In case
that the pitch angle ξ not close to 0, the analytical
result is

[
Dµµ

Dpp

]
=

v2.5µ5.5

Ω1.5L2.5(1 − µ2)0.5
Γ[6.5, k

− 2
3

maxk‖,resL
1
3 ][

1
m2V 2

A

]
, (2)

where Γ[a, z] is the incomplete gamma function. The
presence of this gamma function in our solution makes
our results orders of magnitude larger than those5 in
[6] for the most of energies considered. However, the
scattering frequency,

ν = 2Dµµ/(1 − µ2), (3)

are still much smaller than the estimates for isotropic
and slab model [31]. As the anisotropy of the Alfvén
modes is increasing with the decrease of scales, the
interaction with Alfvén modes becomes more efficient
for higher energy cosmic rays. When the Larmor ra-
dius of the particle becomes comparable to the injec-
tion scale, which is likely to be true in the shock region
as well as for very high energy cosmic rays in diffuse
ISM, Alfvén modes get important.

It’s worthwhile to mention the imbalanced cascade
of Alfvén modes [7]. Our basic assumption above was
that Alfvén modes were balanced, meaning that the
energy of modes propagating one way was equal to
that in opposite direction. In reality, many turbulence
sources are localized so that the modes leaving the
sources are more energetic than those coming toward
the sources. The energy transfer in the imbalanced
cascade occurs at a slower rate, and the Alfvén modes
behave more like waves. The scattering by these im-
balanced Alfvén modes could be more efficient. How-
ever, as the actual degree of anisotropy of imbalanced
cascade is currently uncertain, and the process will be
discussed elsewhere6.

5We compared our result with the resonant term as the non-
resonant term is spurious as noted by [6].

6Preliminary results by one of us show that the inertial range
over which the degree of anisotropy of imbalanced turbulence
is small is very limited.
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4.2. Scattering by fast modes

The contribution from slow modes is no more than
that by Alfvén modes since the slow modes have
the similar anisotropies and scalings. More promis-
ing are fast modes, which are isotropic. With fast
modes there can be both gyroresonance and transit-
time damping (TTD).

TTD happens due to the resonant interaction with
parallel magnetic mirror force. The advantage of TTD
is that it doesn’t have a distinct resonant scale associ-
ated with it. TTD is thus an alternative to scattering
of low energy CRs which Larmor radii are below the
damping scale of the fast modes. Moreover, we shall
show later that TTD can contribute substantially to
cosmic ray acceleration (also known as the second or-
der Fermi acceleration). This can be crucial in some
circumstances, e.g., for γ ray burst ([16]), and acceler-
ation of charged particles [32]. Different from gyrores-
onance, the resonance function of TTD is broadened
even for CRs with small pitch angles. The formal reso-
nance peak k‖/k = Vph/v‖ favors quasi-perpendicular
modes. However, these quasi-perpendicular modes
cannot form an effective mirror to confine CRs be-
cause the gradient of magnetic perturbations along
the mean field direction ∇‖B is small. Thus the reso-
nance peak is weighted out and the Breit-Wigner-type
[27] resonance function should be adopted.

Here we apply our analysis to the various phases
of ISM. In low β medium, both collisionless and col-
lisional damping increases with θ unless θ is close to
π/2. This means that those quasi-parallel fast modes
are least damped. For these modes the argument for
the Bessel function in Eq.(1) is k⊥ tan ξ/k‖,res < 1
unless ξ is close to 90o. So we can take advantage
of the anisotropy of the damped fast modes and use
the asymptotic form of Bessel function for small argu-
ment Jn(x) � (x/2)n/n! to obtain the corresponding
analytical result for this case:[

Dµµ

Dpp

]
=

π(Ωvµ)0.5(1 − µ2)
2L0.5⎡

⎢⎣ (1 − (
(

k⊥,c

k‖,res

)2

+ 1)−
7
4 )/7

(1 − (
(

k⊥,c

k‖,res

)2

+ 1)−
3
4 )m2V 2

A/3

⎤
⎥⎦ (4)

In high β medium and partially ionized medium,
fast modes are subjected to severe damping and trun-
cated at scale larger than the resonant scale of CRs,
∼ Ω/c. The only available scattering mechanism is
TTD, which can still provide much more efficient scat-
tering for CRs comparing with Alfvén modes (see [33]
for detail).

A special case is that the cosmic rays propagate
nearly perpendicular to the magnetic field, so called
the 90o scattering problem. It should be noted that
with resonance broadening associated with the tur-
bulence, the requirement v‖ = Vph/ cos θ > Vph is
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Figure 2: Scattering frequency ν given by Eq.(3) vs. the
kinetic energy Ek of cosmic rays (a) in halo, (b) in WIM.
The ’x’ lines refer to scattering by gyroresonance and
solid lines are the corresponding analytical results given
by Eq.(4). The dashed line are the results for TTD (from
[33]).
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Figure 3: The scattering frequency ν vs. cosine of pitch
angle µ of 1GeV CR (a) in halo, (b) in WIM. The ’x’
lines refer to scattering by gyroresonance and solid lines
are the corresponding analytical results given by Eq.(4).
The dashed and diamond lines are the results for TTD
adopting δ function and Breit-Wigner function
respectively (from [33]).

relieved. The contribution from TTD thus becomes
dominant for sufficiently small µ. However, since
quasi-linear approximation is not accurate in this
regime, proper calculation should be carried out with
non-linear effects taken into account [13, 23].

5. Cosmic ray self confinement by
streaming instability

When cosmic rays stream at a velocity much larger
than Alfvén velocity, they can excite by gyroresonance
MHD modes which in turn scatter cosmic rays back,
thus increasing the amplitude of the resonant mode.
This runaway process is known as streaming insta-
bility. It was claimed that the instability could pro-
vide confinement for cosmic rays with energy less than
∼ 102GeV [5]. However, this was calculated in an
ideal regime, namely, there was no background MHD
turbulence. In other words, it was thought that the
self-excited modes would not be appreciably damped
in fully ionized gas.

This is not true for turbulent medium, however. [31]
pointed out that the streaming instability is partially
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suppressed in the presence of background turbulence7.
More recently, detailed calculations of the streaming
instability in the presence of background Alfvénic tur-
bulence were presented in [11].

For interaction with fast modes, it happens at the
rate τk ∼ (k/L)−1/2Vph/V 2 (see Eq.(2.2)). By equat-
ing the growth rate [22],

Γ(k) = Ω0
N(≥ E)

np
(−1 +

vstream

VA
) (5)

and the damping rate Eq.(2.2), we can find that the
streaming instability is only applicable for particles
with energy less than

γmax � 1.5 × 10−9[n−1
p (Vph/V )(LvΩ0/V 2)0.5]1/1.1,

(6)
which for HIM, provides ∼ 20GeV if taking the injec-
tion speed to be V � 25km/s.

One of the most vital cases for streaming instabil-
ity is that of cosmic ray acceleration in strong MHD
shocks. Such shocks produced by supernovae explo-
sions scatter cosmic rays by the postshock turbulence
and by preshock magnetic perturbations created by
cosmic ray streaming. The perturbations of the mag-
netic field may be substantially larger than the regular
magnetic field. The corresponding nonlinear growth
rate is ([26]):

Γ(k) � akεU3

cVA(γa
max − (1 + a)−1)(krg0)a(1 + A2

tot)(1−a)/2
,

(7)
where ε is the ratio of the pressure of CRs at the shock
and the upstream momentum flux entering the shock
front, U is the shock front speed, a−4 is the spectrum
index of CRs at the shock front, rg0 = c/Ω0, Atot is the
dimensionless amplitude of the random field A2

tot =
δB2/B2

0 .
Magnetic field itself is likely to be amplified through

an inverse cascade of magnetic energy at which per-
turbations created at a particular k diffuse in k space
to smaller k thus inducing inverse cascade. As the re-
sult the magnetic perturbations at smaller k get larger
than the regular field. As the result, even if the insta-
bility is suppressed for the growth rate given by eq.
(5) it gets efficient due to the increase of perturbations
of magnetic field stemming from the inverse cascade.

Whether or not the streaming instability is efficient
in scattering accelerated cosmic rays back depends on
whether the growth rate of the streaming instability is
larger or smaller than the damping rate. The precise

7The fast cascade induces fast non-linear damping of MHD
turbulence. Essentially the damping of Alfvénic turbulence
happens in one eddy turnover time for large eddies. This ef-
fect was invoked in [24] to explain the small transversal size of
X-ray filaments observed ([1])

picture of the process depends on yet not completely
clear details of the inverse cascade of magnetic field.
If, however, we assume that the small scale driving
provides at the scales of interest isotropic turbulence
the nonlinear damping happens on the scale of one
eddy turnover time. Assuming the shock front speed
U is low, we attain the maximum energy of particles
accelerated in the shock by equating the growth rate
of the instability Eq.(7) to the damping rate due to
turbulence cascade Eq.(2.2):

γmax � (
aε(LeB0)0.5U3

m0.5V 2c2
)1/(0.5+a). (8)

From this we can estimate γmax � 2×107(t/kyr)−9/4

in HIM.
As shown in the Eq.(5) and (7), the growth rate

depends on the CRs’ density. In those regions where
high energy particles are produced, e.g., shock fronts
in ISM, γ ray burst, SN, the streaming instability is
more important.

6. Summary

In the paper above we characterized interaction
of cosmic rays with balanced interstellar turbulence
driven at a large scale. Our results can be summa-
rized as follows:

1. fast modes provide the dominant contribution
to scattering of cosmic rays in different phases of in-
terstellar medium provided that the turbulent energy
is injected at large scales. This happens in spite of
the fact that the fast modes are more subjected to
damping compared to Alfvén modes.

2. As damping of fast modes depends on the angle
between the magnetic field and the wave direction of
propagation, we find that field wondering determined
by Alfvén modes affects the damping of fast modes.
At small scales the anisotropy of fast mode damping
makes gyroresonant scattering within slab approxi-
mation applicable. At larger scales where damping
is negligible the isotropic gyroresonant scattering ap-
proximation is applicable.

3. Transient time damping (TTD) provides an im-
portant means of cosmic ray transport. Use of δ func-
tion resonance entails errors, and therefore, resonance
broadening is essential for TTD. Our study shows that
it is vital for low energy and large pitch angle scatter-
ing. And it dominates scattering of cosmic rays in
HIM and the partially ionized interstellar gas where
fast modes are severely damped.

4. Streaming instability is subjected to non-linear
damping due to the interaction of the emerging mag-
netic perturbations with the surrounding turbulence.
The energy at which the streaming instability is sup-
pressed depends on whether on the inverse cascade
of magnetic energy as the instability gets more easily
excited for low energy particles.
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