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Light curves of X-ray pulsars reveal characteristics of the underlying neutron star and emission region. To
accurately interpret observations of millisecond period X-ray pulsars, one requires theoretical models of such
light curves which fully account for general relativity and timing effects. This calculation is frequently done
by employing one or more approximations, such as using an approximate spacetime, neglecting some time
delay effects, or neglecting stellar oblateness. We are developing a new computer code to calculate these light
curves which fully accounts for these effects; sample calculations are exhibited and presented alongside a similar
calculation which employs commonly-used approximation techniques.

1. Introduction

Observations of pulsed light emitted from the sur-
face of a neutron star have the potential to constrain
the star’s mass, radius and equation of state. By
modelling the physics of the emission region (such as
the emissivity, shape and size) and tracing the paths
of photons travelling through the relativistic gravita-
tional field of the spinning neutron star to the ob-
server, it is possible to create model pulse shapes
which can be compared to the observed pulse shapes,
allowing fits to the star’s macroscopic parameters to
be made. The main problem in such a program is dis-
entangling the effects arising from the neutron star’s
gravitational field and the effects coming from the as-
sumptions about the spectrum and geometry of the
emission region. A further complication arises if the
neutron star is rotating rapidly, since the effects of ro-
tation can significantly alter the geodesic paths trav-
elled by the photons from the simple Schwarzschild
geodesics.

A standard approximation scheme for ray-tracing
near rotating neutron stars has been to treat the prop-
agation of photons as though the gravitational field
were static, so that the Schwarzschild metric and the
formalism presented by Pechenick et al. [1983] can be
used. The effects of rotation are brought in by intro-
ducing special relativistic Doppler boosts. The con-
tribution of the light-crossing time is commonly ne-
glected, which for millisecond period pulsars can be
as long as about 80 µs, or 5% of the rotational period.
Such an approximation scheme was recently used by
Poutanen and Gierliński [2003] to fit the pulse profile
of SAX J1808.4–3658 and to place constraints on the
neutron star’s value of M/R.

A different approximate approach has been to treat
the gravitational field outside the neutron star as be-
ing approximately described by the Kerr metric with
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the Kerr parameter a fixed by the angular momentum
of the underlying neutron star. This approach was ap-
plied to modelling the 314 Hz oscillations seen during
thermonuclear bursts from the accreting millisecond
pulsar XTE J1814–338 by Bhattacharyya et al. [2005]
to obtain constraints on the compactness of the under-
lying neutron star; their approach included the contri-
bution of the light-crossing time in the calculation of
the model light curves, but employed an approximate
spacetime metric, and approximated the shape of the
star as spherical.

Cadeau et al. [2005] set out to determine what ef-
fect the use of such approximations would have on
the stellar radius obtained by fitting theoretical light
curves to observations. By considering a simple model
where emission and observation of light take place in
the equatorial plane, they demonstrated that this fit-
ting procedure to obtain constraints on the neutron
star’s radius can result in errors on the radius of up
to ±10% compared with a similar calculation where
the spacetime is precisely calculated (i.e., not taken
to be either Schwarzschild or Kerr) and all time of
arrival (TOA) effects are accounted for.1 The bulk
of this error was due to neglecting the light-crossing
time.

Continuing this programme, we have developed a
new computer code to calculate light curves for these
pulsars which allows for emission from arbitrary lo-
cations on the star’s surface and observation at ar-
bitrary inclinations. Our method uses an exact (nu-
merical) calculation of the spacetime, and accounts
for stellar oblateness and all TOA effects. Our code
is also able to carry out analogous approximate cal-
culations by selecting an approximate metric (i.e.,
Schwarzschild or Kerr), optionally approximating the

1To be clear, we are assuming that the effects due to the
orbital period of the binary have been removed from the light
curve; we are only concerned with those effects that arise due to
special relativity (the “snapshot effect”) and due to the varying
distance light travels during a rotation of the neutron star (the
“light-crossing time”).
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star as a sphere (as opposed to an oblate spheroid), or
disregarding some or all TOA effects. We are present-
ing an overview of the method and some preliminary
light curve calculations with all effects included. In
Section 3.4 we show two exact calculations alongside
approximate versions where the spacetime is approx-
imated as Schwarzschild, oblateness is not accounted
for, and the TOA effects are not fully accounted for.

2. Formulation of Problem

To compute the pulse shape we wish to know the
flux F at each instant, where

F =

∫ (1+z)νohigh

(1+z)νolow

dνe

∫
dΩ Iνe

(αe)/(1 + z)4,

and the integral depends on the observed frequencies
of light, which range from νolow

to νohigh
, the inten-

sity I of the emitted light as a function of emitted
frequency νe and zenith angle α of the emitted beam,
the redshift of the light z, and the element of solid
angle in the observer’s sky dΩ.

To carry out this calculation, one needs to decide
on the description of the gravitational field of the star;
the manner in which to handle relative TOAs of pho-
tons; the inclination of the star with respect to the ob-
server; the location of emitting region; and the emis-
sion spectrum and anisotropy (if any) of the emitting
region. With all of this information, we can compute
the light curve for the model pulsar.

2.1. Gravitational field

Typically, the Schwarzschild or Kerr metrics are
used as approximations to the precise neutron star
metric by matching parameters (M/R, J) of the un-
derlying neutron star. Using the computer code RNS
[Stergioulas and Friedman 1995], it is possible to pre-
cisely compute the stellar structure and the compo-
nents of the general stationary axisymmetric metric,

ds2 = −eγ+ρ dt2 + eγ−ρr2 sin2 θ(dφ − ω dt)2

+e2α(dr2 + r2 dθ2),

where γ, ρ, ω, and α are all functions of r and θ only,
by assuming that the matter comprising the star is a
rigidly-rotating perfect fluid. The code requires the
mass and angular velocity of the star and the equa-
tion of state (EOS) of the fluid, and outputs the metric
components and their derivatives, and details of the
neutron star’s structure. If one desires an approxi-
mate metric, the metric components are analytically
determined given M , R, and J . With a choice of met-
ric in hand, we integrate the geodesic equations which
determine the path light follows from the star to the
observer using an adaptive step size Runge-Kutta rou-
tine.

Figure 1: To carry out the calculation, a small
quadrilateral is evolved around one rotational period, at
each step recording the emitted flux and arrival time.

2.2. Time of arrival (TOA)

Time of arrival effects can be, and commonly are,
thought of only in the sense of the special relativistic
“snapshot” effect [Terrell 1959], where the apparent
angular size of the emission region is magnified when it
is moving away from the observer, owing to the image
in the detector being formed by photons emitted at
different times from different parts of the star. The
flux is integrated as a function of rotational phase,
with the solid angle transformation factor put in by
hand.

For rapid rotation, the contribution of the light-
crossing time begins to be important, as the photons
emitted from the far side of the star can take measur-
ably longer to arrive than those from the near side.
By calculating the light travel times during the inte-
gration of the geodesic equations, the flux due to an
infinitesimal emission region can be correctly binned
as a function of arrival time, not rotational phase.
No additional correction factor is required when this
is done. Our actual procedure to carry out the cal-
culation is to evolve a small quadrilateral around one
period as depicted in Figure 1, at each step calculating
the emitted flux and the arrival time of the flux, and
we output the flux as a function of arrival time. In
this way, the flux from extended regions can be cal-
culated by properly adding the fluxes from different
latitudes and phase offsets.

3. Example calculations

Our code allows for the modelling of various emis-
sion spectra and anisotropy, but for the purposes here
we are restricting the light curves that follow to bolo-
metric flux emitted isotropically from an infinitesimal
region at the surface. In Sections 3.1, 3.2, and 3.3,
we use a full calculation where the exact spacetime is
used and all TOA effects are included. In Section 3.4,
we compare some calculations to their approximate
analogues.
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Figure 2: Bolometric light curves for the four models of
Table I. Light is emitted at θ = 45◦ and observed in the
equatorial plane in this example.

3.1. Choice of model

In this section, we consider an emission region lo-
cated at θ = 45◦ and the observer located in the equa-
torial plane at θ = 90◦ for each of the four models
listed in Table I. EOS A is relatively soft, and so Mod-
els 1 and 2 are relatively compact. EOS L is stiffer,
and so Models 3 and 4 are relatively large. Model 4
is spinning quite near its breakup speed.

From Figure 2, one can see that more compact stars
have light visible for a longer fraction of their period
due to light bending. Also, increased rotation speed
has the effect of making the rise time of the light curve
shorter compared with the fall time owing to the larger
blueshift/redshift along the line of sight. Finally, the
effect due to light-crossing time is exaggerated for the
600 Hz cases because one light-crossing time repre-
sents a larger fraction of the rotational period for the
faster stars.

3.2. Effect of observer inclination

Figure 3 shows several light curves computed using
Model 4 for an emission region located at θ = 45◦, but
for observers with different inclinations as measured
from the rotation axis. The computed light curves
have been phase-shifted to align the rise for each ob-
server. As expected, observers closer to the rotation
axis in the hemisphere of emission see less modulation
in the signal than the observers with large inclinations.

3.3. Effect of emitting region location

Figure 4 shows light curves computed using Model 4
for an observer located in the equatorial plane at
θ = 90◦, but for emission from θ = 45◦ and θ = 61◦.
The computed light curves have been phase-shifted to
align the rise for each emitting region. Note that the
61◦ light curve peaks faster than the 45◦ light curve;
this is due to the higher velocities at the surface, and
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Figure 3: Bolometric light curves for Model 4, where the
observer is located at different inclinations θ as measured
from the rotation axis, and light is emitted from θ = 45◦.
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Figure 4: Bolometric light curves for Model 4, where the
observer is located in the equatorial plane, and the
emission region is at either θ = 45◦ or θ = 61◦ as
measured from the rotation axis.

therefore larger Doppler effects, as one moves towards
the equator.

3.4. Effect of Schwarzschild
approximation

In this section, we are considering emission from
θ = 45◦ seen by an observer in the equatorial plane.
Figure 5 compares two calculations for Model 1: a
calculation using the exact spacetime and account-
ing for TOA effects (“Exact”), and a calculation us-
ing the Schwarzschild metric for a spherical star with
the same M/R as Model 1 and accounting for only
the “snapshot” effect, but not the light-crossing time
(“Schw.”). Figure 6 is a similar plot for Model 4. One
can see that an effect of including the light-crossing
time is that the exact calculations appear to have vis-
ible light for a longer fraction of the period; notably, in
the case of Figure 5, the light is always visible for the
exact calculation but not using the Schwarzschild ver-
sion. It is unclear whether this is an effect of replacing
the oblate star with a spherical one in the approxima-
tion, or an effect solely due to light-crossing time; this
is an issue we are pursuing. Also, the departure from

2306 3

22nd Texas Symposium on Relativistic Astrophysics at Stanford University, Dec. 13-17, 2004



Table I Neutron star models with mass M = 1.4M�

Model EOS ΩB/2πa Ω?/2πb (Hz) Rc (km) cJ/(GM2)d GM/(c2R) v/ce ωeq/2πf (Hz)
1 A 1387 300 9.62 0.109 0.21 0.08 50.2
2 600 9.78 0.223 0.21 0.16 98.3
3 L 742 300 15.11 0.234 0.14 0.11 27.9
4 600 16.38 0.508 0.13 0.24 48.9

aThe break-up spin frequency for a star with the given mass
and EOS.
bThe spin frequency of the model.
cThe equatorial Schwarzschild radius.
dThe angular momentum of the model
eThe speed of the neutron star at the equator measured by

a static observer at the surface. Velocities are calculated with
the full metric.

fThe frame-dragging term at the equator; this is the angular
velocity of a zero angular momentum particle at the equator.
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Figure 5: Bolometric light curves for Model 1, comparing
a full calculation using the exact metric and all TOA
effects with a calculation using the Schwarzschild metric
with the same M/R and incorporating only the
“snapshot” effect.
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Figure 6: Calculations similar to Figure 5, but for
Model 4.

the approximation appears more pronounced for the
faster and larger star in Figure 6, which can be un-
derstood as an effect of its longer crossing time and a
shorter rotational period.

4. Conclusion

We have made progress implementing a new code
to calculate light curves of millisecond period pulsars
which uses a precise prescription of the spacetime and
stellar structure and properly accounts for all TOA ef-
fects. Our current work is focused on quantifying the
effect of using different approximate techniques in the
calculation of theoretical light curves on the result-
ing interpretation of X-ray observations from accret-
ing millisecond period X-ray pulsars. A description of
our code and discussion of implications for data anal-
ysis is forthcoming.
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