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Weak lensing is found in the correlations of shear in 104 galaxy images, strong lensing is detected by the obvious
distortion of a single galaxy image, whereas intermediate lensing requires detection of less obvious curvature in
several neighboring galaxies. Small impact-parameter lensing causes a sextupole distortion whose orientation
is correlated with the quadrupole distortion (shear). By looking within a field for the spatial correlation
of this sextupole-quadrupole correlation, an intermediate lensing regime is observed. This technique requires
correction for the sextupole as well as the quadrupole content of the PSF. We remove the HST PSF and uncover
intermediate lensing in the Hubble deep fields. Correlations of the type expected are found.

1. Introduction

The traditional weak gravitational lensing tech-
niques [1–3], which locate and quantify the large
clumps of matter such as clusters of galaxies (visible
or dark) with 1014 M�, are not sensitive to the small
scale structure or substructure of large clusters. We
present here a new method designed to expose small
scale structure [4]. We have applied the method to the
north Hubble deep field and have seen a signal which
has the features expected. We also call this “multi-
pole lensing”, since it involves the measurement of the
quadrupole and sextupole lensing strengths, and may
be extended to other multipoles as well.

2. General lensing kicks and maps

This power series expansion from the 1/r deflection
of a light stream by a point mass can be generalized
to yield the kick in both coordinates:

∆x′ + i∆y′ = − 4MG

x0 + (∆x − i∆y)
(1)

= −4MG

x0

[
1 − ∆x − i∆y

x0
+

(
∆x − i∆y

x0

)2

+ ...

]
.

Concentrating on the linear term, one sees for exam-
ple that the horizontal kick is de-focusing, while the
vertical kick is focusing. The image appears larger
in the focused direction and smaller in the de-focused
direction, hence the linear term changes a circle into
an ellipse. It is a general feature that the image
distortions have the opposite sign of the map coef-
ficients. The 2nd-order term is the sextupole term.
For ∆y = 0, ∆x > 0 the deflections of the 1st- and
2nd-order terms have the opposite sign, hence the
quadrupole is minimum there and the sextupole term
is maximum. For ∆y = 0, ∆x < 0 the quadrupole has
its other minimum and the sextupole also has a min-
imum. Below in the lower group of fig. 1 are shown
the superposition of quadrupole and sextupole distor-
tions for two distinct orientations of the sextupole mo-
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Figure 1: ”Curved” and ”Aligned” galaxies. δ = δ1 if
|δ1| < 30◦, else δ = δ2. −30◦ ≤ δ ≤ 30◦, where δ ∼ 0◦ for
”curved” and δ ∼ ±30◦ for ”aligned” galaxies.

ment with respect to the quadrupole moment. It is the
curved shape that would arise from a lensing event.

The plan we will follow is to measure the quadrupole
and sextupole shape of all galaxies, classify each
galaxy according to whether it is “curved”, “mid-
range” or “aligned”, and examine the distribution
of “curved” galaxies on the sky to determine if
curved galaxies are randomly distributed or unusually
clumped.

The lensing map can be written as a set
of 4 functions xS(xT , yT ), yS(xT , yT ), x′

S(xT , yT ),
and y′

S(xT , yT ), where “T” designates “telescope”
and “S” designates “source”. The two functions
xS(xT , yT ) and yS(xT , yT ) can be combined into one
complex function by defining wS = xS+iyS. Since the
transverse width of the light stream will be small com-
pared to characteristic dimensions of the variations of
the lensing mass distributions, we may expand this
function in a power series about the stream centroid:

wS(wT , w̄T ) = wT +
∞∑

n,m=0

anmwn
T w̄m

T . (2)

The significance of the variables w and w̄ rests on the

1506 1

22nd Texas Symposium on Relativistic Astrophysics at Stanford University, Dec. 13-17, 2004



fact that products and powers of them are rotation
eigenfunctions. It follows that the terms in the expan-
sion for wS have a simple interpretation. The 1 + a10

combination represents a simple rotation and scaling,
the a01 term is a quadrupolar distortion (connected
to shear in weak lensing) , the a02 term is a sextupo-
lar distortion, the a03 term is an octupolar distortion,
the a20 term is a cardioid-like distortion, and the a11

term is an r2-dependent translation of circles, and so
on. We will be concerned primarily with the terms
a01, a02 and refer to them more simply by the letters,
a and b, respectively.

In accord with the variables chosen for the map,
we expand the solution to Laplace’s equation in the
variables w = x + iy and w̄ = x − iy. Variables
without subscripts are taken to lie in the lensing
plane. Using these variables, the power series ex-

pansion for the potential is Φ =
∞∑

n,m=0

1
n!m!Φnmwnw̄m

where Φnm = ∂n∂̄mΦ evaluated at w = w0. If both
n and m are greater than or equal to 1, the term will
be proportional to the density or a derivative of the
density, since Φ11 = 1

4∇2Φ = πGρ. The two compo-
nents of the kick, given in the form ∆x′ + i∆y′, are
contained in the single equation,

∆w′ = −2 ∂̄(2Φ). (3)

The geometry of the deflection implies that wS =
wT + DLS∆w′(w, w̄) with w = DT L

DT S
wT , where

DLS, DLT and DTS are comoving distances from the
lensing plane to the source, from the lensing plane to
the telescope, and from the telescope to the source,
respectively, divided by 1+ zL, with zL is the redshift
of the lensing plane. Thus for a general potential the
map coefficients are given by

a10 = −4DLS
DTL

DTS
Φ11 = −4πGDLS

DTL

DTS
ρ,

a = −4DLS
DTL

DTS
Φ02,

b = −4DLS

(
DTL

DTS

)2 1
2
Φ03. (4)

The map coefficients for the point source may be found
by evaluating the derivatives of 2Φδ = 4MGLn [r] =
2MGLn [ww̄]:

aδ = DLS
DTL

DTS

4MG

w̄2
0

,

bδ = −DLS

(
DTL

DTS

)2 4MG

w̄3
0

. (5)

3. Model method to determine map
coefficients

We use a novel method to estimate lensing map
coefficients that takes into account the point-spread
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Figure 2: Schematic presentation for the model method.
The initial azimuthally symmetric image (a1) with radial
profile (a2), get distorted by a lensing with a and b map
coefficients (b) and smeared by HDF PSF (c). The graph
(d) is a final simulated image after application of charge
diffusion, dithering and drizzle. The image (e) is a real
HDF galaxy those distortion has been identified by the
”Model” method.

function (PSF), the diffusion of charge between cam-
era pixels, the dithering of pointing, and drizzle of
photon counts onto the final pixel grid.

The standard ”moment” [5] method has the advan-
tage of simplicity, but because the images are nec-
essarily truncated its accuracy is compromised as a
result of edge effects and an inherent ambiguity in in-
cluding the effect of the PSF. Furthermore, it does not
bring into play the knowledge that moments derived
from the action of lensing will have a radial strength
proportional to the derivative of the radial profile of
the galaxy. The radial-fit method overcomes these
shortcomings. The model method begins with a pa-
rameterized radial profile of the source galaxy and in
addition models the PSF, diffusion and other image
composition processes (see fig. 2). This latter method
is limited by the imperfect knowledge of the features
it seeks to include (such as PSF and charge diffusion),
plus of course, the noise inherent in background galaxy
shapes and photon counting noise. Background galax-
ies can have shapes that mimic lensing, one can show
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in this case that this method gives a vectorial sum of
the lensing coefficient and the background value.

We assume a radial profile for the background
galaxy of the form 1

F (r2
S) = c0(A + B(

rS

r0
)2 + C(

rS

r0
)4)+ e

−D(
rS
r0

)2
, (6)

This function must depend only on r2
S . The parameter

r0 is taken to be near the rms size of the source image.
By changing the size of r0 one can change the size of
the image without affecting its shape. The factor c0

is introduced so that the shape parameters, which are
dimensionless, have values A ≈ 1 and B and C can be
compared to unity. The + subscript indicates that if
the polynomial has a value less than zero, it is to be
set equal to zero.

The effect of lensing is contained in the parameters
of the map of eq. 2. One replaces each occurrence of
r2
S by the expression wSw̄S .
The parameters of the radial profile and the map

are determined by minimizing the L2 norm:

‖iF − iT ‖2
ρ =

∫
(iF − iT )2 ρ dxT dyT (7)

where iF = F (r2
S) | ∂wS

∂wT
|. iT is the light-intensity func-

tion normalized to unit integral and according to the
notation introduced in the previous section the sub-
script T means the intensity as observed at the tele-
scope. In iF , r2

S = wSw̄S is understood to be a func-
tion of xT and yT through wT and w̄T . The |...| is
the Jacobian of the transformation between S and T
variables. All map variables in the Jacobian occur
in 2nd order except for the d variable, which occurs
in 1st order. A weight function ρ can be introduced
if desired. However, because this technique ignores
truncated pixels rather than considering them to be
zero, edge effects are inherently smaller compared to
the moment method. At each calculation of iF the
Jacobian is monitored to see that it is not negative at
that or any smaller r.

The model method begins by constructing an iF
(here on .02” pixels) (fig. 2(b)) and convolving it with
a sub-sampled PSF (also on .02” pixels) as provided
by the Tiny Tim program (fig. 2(c)). This convolved
image is dropped (25 times) onto a dithered original
pixel grid (0.1” pixels). A diffusion kernel is applied to
each resulting image. The image on each original pixel
is shrunk to half its size in each dimension, and then
“drizzled” to the final Hubble deep field grid (0.04”
pixels) according to the intersection of the diminished
original pixel area with the pixels in the final grid (fig.
2(d)).

1K. Kuijken [6] introduced the radial-fit method, taking a
sum of Gaussians as the ansatz for the radial profile.

4. Sextupole-quadrupole measurements
and relative orientation

The software SExtractor [7] was used to select
galaxies from the Hubble deep field and to specify
which pixels to include in the image. Galaxies were
selected which appeared for both a 4σNF and a 6σNF

threshold option (4 or 6 times the rms noise floor)
with the convolution option taken to be the identity.
Only galaxies that had been assigned a z-value with
z > 0.8 were kept. 2 There were about 569 galaxies
so identified in the north field. The images used in
our analysis were cut at 6σNF and defined to be the
dominant simply-connected region.

Galaxy images were transferred to the Mathematica
programming environment for inspection where galax-
ies with more than one maxima were removed. Of the
569 identified galaxies with z > 0.8, 427 survived this
single-max cut.

We have also impose the noise cuts based on
Poisson-noise estimation [8]. The following list sum-
marizes the results on the several galaxy cuts:
569 in the z-catalog with z > 0.8 and found

by SExtractor for thresholds 4σNF

and 6σNF ;
427 having only one prominent maximum;
370 larger than 5 pixels in both x and y;
323 with radial-fit having its L2 squared norm

less than 0.05 (“good fit” condition);
217 satisfying the signal-to-noise cut

condition described in [8].
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Figure 3: Distribution of the magnitude of the
quadrupole map coefficients (left plot) and sextupole
map coefficient (right plot), using the model method
(foreground) compared with the fit method
(background).The units of sextupole coefficients are ”per
HDF pixel”.

In fig. 3 we show the distribution of magnitude
of the quadrupole coefficient (left) and the distribu-
tion of sextupole coefficients (right) that were found
by radial-fit (background) method and model method
(foreground).

2We used z-catalogs from ess.sunysb.edu/astro/hdf.html and
bat.phys.unsw.edu.au/ fsoto/hdfcat.html.
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The orientation of the sextupole map coefficient
with respect to the quadrupole coefficient is of pri-
mary interest to us. A plot of the (smallest) angle
between sextupole and quadrupole minima using the
model method is shown in fig. 4 for the galaxies sur-
viving both the L2 norm < 0.05 cut and the signal-to-
noise cut. This angle, which we refer to as δ, runs from
0◦ to 30◦. For δ = 30◦ the shapes will have aligned
maxima, and we refer to such galaxies as “aligned”.
They are pear shaped galaxies, as compared to the
“curved” galaxies which resemble bananas. See fig.
1. Figure 5 compares δ found with the radial-fit and
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Figure 4: The distribuiton of the magnitude of δ, the
smallest angle between a quadrupole minimum and a

sextupole minimum, using the model method, for
galaxies in the north HDF after the noise cut and all

galaxies surviving the L2 cut (background).

model methods. We now proceed to a study of the
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Figure 5: The left panel compares the angle δ as
measured by the radial-fit method and the model

method. The points within the diagonal band (or in the
corners) have a change in δ < 10◦ . The distribution for

δMod − δF it is shown on the right panel.

spatial distributions of the “curved” and “aligned”
galaxies as determined in this section.

5. Clumping of curved galaxies

To quantify clumping for a galaxy subset with NC

members, we draw a circle of fixed radius R about each
member of the subset and count the members of that
subset which lie within the circle. We then compare
the distribution of the number of galaxies having 0, 1,
2, 3, etc. neighbors closer than R, with a large number
of such distributions derived from randomly chosen
subsets having the same number (NC) of galaxies in
two distinct ways:

(1) for an informative but qualitative comparison, we
compare the distribution of the initial subset with the
average distribution of the random subsets, and
(2) for a quantitative comparison, for the subset being
studied and for each of 500 randomly selected subsets
having the same number of galaxies as the original
subset, we sum the galaxies having N or more neigh-
bors (usually N = 4). Each random subset is thereby
associated with a single number, nG, the number of
galaxies of that subset having N or more neighbors.
We then create a bar graph, showing for each value
for nG the number of random subsets which had that
number of galaxies with N or more neighbors. This
distribution is thus a property of random subsets of
a size NC , with neighbor distance R, for the specified
neighbor range. Since the initial subset will have a
certain number, nG, of galaxies having N or more
neighbors, we can ask the question “what fraction
of randomly chosen galaxy subsets have that many
or more members with N or more neighbors?” We
thereby determine a probability that this configura-
tion could occur by chance.

For “curved” galaxies we begin with bar graphs of
type 1 comparing the neighbor distribution with the
average of randomly chosen subsets. In fig. 6 (a), we
show the distribution of the number of neighbors in
a circle of radius R = 280 3 for the “curved” galaxies
using the model method (which we now take to be
δ < 9◦.) Fig. 6 (b) displays an analysis of type 2 for
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Figure 6: A histogram showing the fraction of curved
galaxies having a specific number, N, of curved neighbors
within a circle of radius 280 pixels, compared with the
average of such a distribution for 500 randomly chosen
subsets having the same number of galaxies.

the model method. (The number corresponding to
the “curved” set is indicated by an arrow in this bar
graph.) For the optimum radius, which is typically
between 270 and 340 pixels, there will be less than 25
out of 500 sets that have as many galaxy-circles with
counts equal to or greater than the original curved

3The Hubble deep field images have a drizzled pixel size of
0.04 arc sec. At z =0.6 for current cosmological parameters
(dark matter 23%, baryons 4%, dark energy 73%) the distance
scale would be 6.67 kpc per arc sec. 280 pixels corresponds to
75 kpc.
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set. In other words, the probability of achieving the
curved set by chance is equal to or smaller than 5%.

Figure 7 shows “curved” galaxies (as determined us-
ing model method) in the Hubble north field and for
galaxies having three or more neighbors, their neigh-
borhood circles of radius R=280 pixels. Large “stars”
indicate “curved” galaxies, and small “stars” indicate
remaining background galaxies.

0 1000 2000 3000 4000
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1000

2000

3000

Model, R�280, N � 4

Figure 7: A field plot showing the spatial location of
“curved” galaxies in the north HDF using the model
method to determine the map coefficients. Large “stars”
indicate “curved” galaxies and small “stars” indicate the
remaining background galaxies that survived the
joint-variable signal-to-noise cut. Circles are shown for 4
or more neighbors.

Significantly these results improve as noise con-
straints are relaxed. In this case the clumping sig-
nal becomes stronger with the random probability
decreasing from 5% to 2.5%. Furthermore if the z-
distributions of the random sets are constrained to
resemble the distributions of curved galaxies the prob-
ability decreases to 1.5%.

Given any background distribution of orientations
between sextupole and quadrupole moments, lensing
events will statistically move a galaxy to a “more
curved” condition. Since there is a lot of mass at
distances where the quadrupole and/or the sextupole
deflection coefficient is small there could arise many
weaker ”nudges” toward a “more-curved” condition.
Thus the “aligned” galaxies will be depleted in a non-
uniform way. For this reason we now apply the previ-
ous analysis of “curved” galaxies to “aligned galaxies”.
Similar to the above analysis gives 8%-10% probabil-
ity for the aligne galaxies to be clumped for a larger
radius of the group R ∼ 340 pixels.

6. Total lensing-mass requirements

To simplify our considerations we assume that 1)
the observed increase in the number of galaxies with
4 or more neighbors comes from the addition of 1
or 2 lensing mass “overdensities”, 2) the constituent
halo masses can be taken to have a single value, and
3) the spatial distribution of this constituent can be
sufficiently-well approximated by a top-hat distribu-
tion. The lensing mass is assumed to lie in the region
0.3 < z < 1.25 where the geometrical coefficients for
lensing are large. We project any lensing mass that
exists in this region onto a lensing plane at z=0.6.

The probability to have a scattering event must be
substantial where clumping is seen. An area of π2802

pixels would typically contain 9 background galax-
ies. Assuming the they are equally divided between
curved, mid-range and aligned, then to get a final total
of 5 curved, of the 6 originally non-curved background
galaxies at least 2 must get curved. So the probability
for a background galaxy to be lensed by a sufficiently
strong small-impact parameter lensing event must be
near 33%.

For a top-hat distribution of constituents having a
single mass, the total mass in the distribution will be

MXG = ρGAX =
MG

d2
X

AX =
MG

r2
0

r2
0

d2
X

AX (8)

=
1
4π

DTSDTL

DLS
atyp PaAX ,

where ρ is the (projected) density of the constituents,
AX is the area of the overdensity, M is the mass
of the constituent clumps, and dX is a characteristic
cell size or projected separation distance of the haloes
within the overdensity. r2

0 , the square of a typical
impact parameter, is chosen so that when M/r2

0 is in-
serted in the formula for a, one finds a typical induced
quadrupole coefficient for those events that transform
the local galaxy light-streams to the curved shape.
Pa ≡ πr2

0/d2
X , which is the ratio of the typical impact

parameter area to the cell size, can be interpreted as
the probability that any particular light path receive
an induced map coefficient change of the observed and
required magnitude. AX is the area of the group in
square radians. The observed clumps have areas of
π2802 ≈ 2.5 105 square pixels.

As noted above, the probability to be transformed
from not-curved to curved must be the order of 33%.
We suppose that for any particular galaxy the trans-
formation from not-curved to curved depends on the
probability that the background galaxy is suitable (for
example its moments are small enough to easily alter
or their orientation is conducive to change) times the
probability that the kick is large enough. We assume
that these probabilities are roughly equal, and hence
get a probability of Pa ≈ 0.6 that the kick is large
enough. (Pa ≈ 0.6 implies dX/r0 ≈ 2.3.)
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The typical quadrupole lensing coefficient, atyp, for
these events has to be large enough to change mo-
ment alignments, so it must be comparable to but
can probably be less than the average of the back-
ground coefficients, which can be estimated to be a
bit less than < a >, as deduced from the model
method, because we have already included a factor
to insure that the background galaxy is “suitable” .
For atyp ≈ 0.2, Pa ≈ 0.6, AX = 10−8 square radians
(corresponding to 2.5 105 square pixels), and setting
DTL = DLS = 1.4 Gpc for a lensing plane at z = 0.6,
we find MXG ≈ 0.27 pc ⇔ MX = 5.6 1012 M�.

This estimate depends on: the area of the region of
enhanced “curving”, the enhancement of the probabil-
ity of finding a curved galaxy in that region, and the
typical value of the quadrupole map coefficient. While
these numbers can vary somewhat, each is confined to
a narrow range.

We have also simulated this situation, randomiz-
ing the position of the background galaxies, randomiz-
ing background values of map coefficients according to
our measurements, and randomizing overdensity con-
stituent positions. The result is that to identify an
overdensity 50% of the time requires a total lensing
mass of 5 1012M�.

7. Probable overdensity origins

Using 0.27 times the critical density one finds that
the average matter behind a circle of radius 280 pix-
els in the region from 0.3 < z < 1.25 has a mass
of 6.8 1012M�. But only constituents with a mass
109 < M < 5 1011M� can be seen. Smaller masses
require an impact parameter smaller than the back-
ground galaxy radii. Larger masses have radii that
are too large to achieve the required impact param-
eters. See fig. 8. One can use the Sheth-Tormen
[9] distribution to estimate the fraction of the total
mass with halo mass in this mass range to be about
1/5th, which equals 1.4 1012M�. There is actually a
bit more detectable mass than this, because the large
haloes have large radii, so that light paths will be
penetrating them and can detect sub-structure they
might contain. We estimate this sub-halo mass at
0.3 1012M�, achieving a grand total estimate of an
average total mass in the detectable constituent mass
range of 1.7 1012M�.

To estimate the overdensity and underdensity ex-
tremes we looked at the visible haloes between 0.3 <
z < 1.25. One finds that in areas of radius 280 pix-
els, the overdensities reach twice their average and the
underdensities go to zero. So if the invisible mass is
organized according to the visible mass, one would
expect an overdensity of 3.4 1012M�. This is close to
the lensing-based estimate of 5 1012M�. More con-
vincingly the maximum overdensity of visible haloes
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Figure 8: A plot of the constituent mass versus the
impact parameter. Lines of constant a and b are shown
which delineate the range of a and b observed. The range
of values using the model method are shown. The lensing
plane is taken to lie at z = 0.6.

is coincident with the the clump of curved galaxies in
the upper left of the field in fig. 7.

We do not judge the discrepancy between our es-
timates of the lensing mass and overdensity mass to
be significant. Since the process is statistical, a range
of overdensities can produce the clumping of lensing
curvature we observe. But we would venture, that in
larger fields with more statistics, observations could
begin to constrain halo distribution models.
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