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Basing our discussion on the Lagrangian description of hydrodynamics, we studied the evolution of density

fluctuation for nonlinear cosmological dynamics. We solved hydrodynamic equations for a self-gravitating fluid

with pressure, given by a polytropic equation of state, using a perturbation method. In this conference, we

discuss validity of these perturbative solutions and application for structure formation in the Universe. Especially

we will notice the correspondence between past modified Lagrangian perturbation models and our model.

1. Intr oduction

The structure formation scenario based on gravi-
tational instability has been studied for a long time.
Zel’dovich [1] proposed a linear Lagrangian approxi-
mation for dust fluid. This approximation is called the
Zel’dovich approximation (ZA) [1–3]. ZA describes
the evolution of density fluctuation better than the
Eulerian approximation [4–6]. After that, the second-
and the third-order perturbative solution for dust fluid
were derived [7, 8].

Although ZA gives an accurate description until a
quasi-linear regime develops, ZA cannot describe the
model after the formation of caustics. In order to
proceed with a hydrodynamical description in which
caustics do not form, the ‘adhesion approximation’ [9]
(AA) was proposed based on the model equation of
nonlinear diffusion (Burgers’ equation). In AA, an
artificial viscosity term is added to ZA. Because of
the viscosity term, we can avoid caustics formation.
From the standpoint of AA, the problem of structure
formation has been discussed [10–12]. However, the
origin of the viscosity has not yet been clarified.

Buchert and Domı́nguez [13] discussed the effect of
velocity dispersion using the collisionless Boltzmann
equation. They showed that when the velocity dis-
persion is regarded as small and isotropic it produces
effective ‘pressure’ or viscosity terms. Furthermore,
they posited the relation between mass density ρ and
pressure P , i.e., an ‘equation of state’. Buchert et
al. [14] showed how the viscosity term or the effective
pressure of a fluid is generated, assuming that the pe-
culiar acceleration is parallel to the peculiar velocity.

With respect to the relation between the viscos-
ity term and effective pressure, and the extension of
the Lagrangian description to various matter, the La-
grangian perturbation theory of pressure has been
considered. Actually, Adler and Buchert [15] have
formulated the Lagrangian perturbation theory for
a barotropic fluid. Morita and Tatekawa [16] and
Tatekawa et al. [17] solved the Lagrangian perturba-
tion equations for a polytropic fluid up to the second
order. Recently, we have derived third-order pertur-
bative solution for simple case [19]. Hereafter, we call

this model the ‘pressure model’.
Here we consider the correspondence between the

pressure model and the modified Lagrangian models.
Then we discuss the validity of linear perturbation
in the pressure model. In summary, we propose an
application of our model.

2. The Lagrangian description for the
cosmological fluid

2.1. Basic equations

In this subsection, we briefly mention the La-
grangian description for the cosmological fluid. In the
comoving coordinates, the basic equations for cosmo-
logical fluid are described as

∂δ

∂t
+

1

a
∇x · {v(1 + δ)} = 0 , (1)

∂v

∂t
+

1

a
(v · ∇x)v +

ȧ

a
v =

1

a
g̃ − 1

aρ
∇xP , (2)

∇x × g̃ = 0 , ∇x · g̃ = −4πGρbaδ , (3)

δ ≡ ρ − ρb

ρb
. (4)

In the Eulerian perturbation theory, the density fluc-
tuation δ is regarded as a perturbative quantity. On
the other hand, in the Lagrangian perturbation the-
ory, the displacement from homogeneous distribution
is considered.

x = q + s(q, t) , (5)

where x and q are the comoving Eulerian coordinates
and the Lagrangian coordinates, respectively. s is the
displacement vector that is regarded as a perturbative
quantity.

The peculiar velocity is given by

v = aṡ . (6)

Then we introduce the Lagrangian time derivative:

d

dt
≡ ∂

∂t
+

1

a
v · ∇x . (7)
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Taking divergence and rotation of Eq. (2), we obtain
the evolution equations for the Lagrangian displace-
ment [15, 16]:

∇x ·
(

s̈ + 2
ȧ

a
ṡ − κγργ−1

b

a2
J−γ∇xJ

)

= −4πGρb(J
−1 − 1) , (8)

∇x ×
(
s̈ + 2

ȧ

a
ṡ

)
= 0 , (9)

where (̇) means the Lagrangian time derivative
(Eq. (7)). To solve the perturbative equations, we
decompose the Lagrangian perturbation to the longi-
tudinal and transverse modes:

s = ∇S + sT , (10)

∇ · sT = 0 , (11)

where ∇ means the Lagrangian spacial derivative.
Because Eqs. (8) and (9) include the Eulerian spa-

cial derivative, we change to the Lagrangian spacial
derivative.

2.2. The Lagrangian per turbation for dust
fluid

Zel’dovich derived a first-order solution of the lon-
gitudinal mode for dust fluid [1]. For the E-dS model,
the solutions are written as follows:

S(1)(q, t) = t2/3S+(q) + t−1S−(q) . (12)

This first-order approximation is called the Zel’dovich
approximation (ZA). Especially when we consider the
plane-symmetric case, ZA gives exact solutions.

To improve approximation, higher-order perturba-
tive solutions of Lagrangian displacement were de-
rived. Irrotational second-order solutions (PZA) were
derived by Bouchet et al. [20] and Buchert and
Ehlers [21], and third-order solutions (PPZA) were
obtained by Buchert [22], Bouchet et al. [7], and Cate-
lan [8]. The second-order and third-order solutions for
the E-dS model are written as follows:

S
(2)
i,i =

3

14

(
S

(1)
i,j S

(1)
j,i − S

(1)
i,i S

(1)
j,j

)
, (13)

S
(3)
i,i =

5

9

(
S

(1)
i,j S

(2)
j,i − S

(1)
i,i S

(2)
j,j

)
− 1

3
det
(
S

(1)
i,j

)
,(14)

where the superscript S(n) means n-th order solutions.

2.3. Adhesion appr oximation

Adhesion approximation (AA) [9] was proposed
from a consideration based on Burgers’ equation. This

model is derived by the addition of an artificial vis-
cous term to ZA. AA with small viscosity deals with
the skeleton of the structure, which at an arbitrary
time is found directly without a long numerical calcu-
lation.

We briefly describe the adhesion model. In ZA, the
equation for ‘peculiar velocity’ in the E-dS model is
written as follows:

∂u

∂a
+ (u · ∇x)u = 0 , u ≡ ∂x

∂a
=

ẋ

ȧ
, (15)

where a(∝ t2/3) means scale factor. To go beyond ZA,
we add the artificial viscosity term to the right side of
the equation.

∂u

∂a
+ (u · ∇x)u = ν∇2

xu . (16)

We consider the case when the viscosity coefficient
ν → +0 (ν 6= 0). In this case, the viscosity term
especially affects the high-density region. Within the
limits of a small ν, the analytic solution of Eq.(16) is
given by

u(x, t) =
∑

α

(
x − qα

a

)
jα exp

(
− Iα

2ν

)

/
∑

α

jα exp

(
− Iα

2ν

)
, (17)

where qα means the Lagrangian points that minimize
the action

Iα ≡ I(x, a;qα)

= S0(qα) +
(x − qα)2

2a
= min. , (18)

jα ≡
[
det

(
δij +

∂2S0

∂qi∂qj

)]−1/2
∣∣∣∣∣
q=qα

, (19)

S0 = S(q, t0) , (20)

considered as a function of q for fixed x [12]. In AA,
because of the viscosity term, the caustic does not
appear and a stable nonlinear structure can exist.

2.4. Pressure model

Buchert and Domı́nguez [13] argued that the effect
of velocity dispersion becomes important beyond the
caustics. They showed that when the velocity disper-
sion is still small and can be considered isotropic, it
gives effective ‘pressure’ or viscosity terms. Buchert
et al. [14] showed how the viscosity term is generated
by the effective pressure of a fluid under the assump-
tion that the peculiar acceleration is parallel to the
peculiar velocity.

Adler and Buchert [15] have formulated the La-
grangian perturbation theory for a barotropic fluid.
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Morita and Tatekawa [16] and Tatekawa et al. [17]
solved the Lagrangian perturbation equations for a
polytropic fluid in the Friedmann Universe. Hereafter,
we call this model the ‘pressure model’.

When we consider the polytropic equation of state
P = κργ , the first-order solutions for the longitudinal
mode are written as follows. For γ 6= 4/3,

Ŝ(K, a) ∝ a−1/4 J±5/(8−6γ)

(√
2C2

C1

|K|
|4 − 3γ| a(4−3γ)/2

)
,

(21)
where Jν denotes the Bessel function of order ν, and
for γ = 4/3,

Ŝ(K, a) ∝ a−1/4±
√

25/16−C2|K|2/2C1 , (22)

C1 ≡ 4πGρb(ain) a 3
in/3 , (23)

C2 ≡ κγρb(ain)γ−1 a
3(γ−1)

in . (24)

ρb and K mean background mass density and La-
grangian wavenumber, respectively. ain means scale
factor when an initial condition is given. When we
take the limit κ → 0, these solutions agree with
Eq. (12).

In this model, the behavior of the solutions strongly
depends on the relation between the scale of fluctua-
tion and the Jeans scale. Here we define the Jeans
wavenumber as

KJ ≡
(

4πGρba2

dP/dρ(ρb)

)1/2

.

The Jeans wavenumber, which gives a criterion for
whether a density perturbation with a wavenumber
will grow or decay with oscillation, depends on time in
general. If the polytropic index γ is smaller than 4/3,
all modes become decaying modes and the fluctuation
will disappear. On the other hand, if γ > 4/3, all
density perturbations will grow to collapse. In the
case where γ = 4/3, the growing and decaying modes
coexist at all times.

We rewrite the first-order solution Eq. (21) with the
Jeans wavenumber:

Ŝ(K, a) ∝ a−1/4 J±5/(8−6γ)

( √
6

|4 − 3γ|
|K|
KJ

)
. (25)

For the pressure model, the Lagrangian perturbatve
solutions are derived up to the third order [16, 17, 19].

In this paper, we analyze the first-order perturba-
tion and the full-order solution. In general, it is very
difficult to solve Eq. (8) for such reasons as the coordi-
nate transformation or non-locality. Here, we imposed
symmetry and avoided these difficulties.

3. Comparison between Lagrangian
models

We analyzed the plane-symmetric and the
spherical-symmetric cases [23]. Here we show only
the sperical-symmetric case. For this case, dust
collapse and void evolution have been analyzed [4–6].
Here we consider the evolution with ZA, PZA, PPZA,
the exact solution for dust fluid, AA, and the pressure
models. To avoid a discontinuity of the pressure
gradient, we adopt the Mexican-hat type model
(Fig. 1):

δ(r) = ε(3 − r2)e−r2/2 . (26)

The initial peculiar velocity is made equal with that
of the growing mode in ZA. For this model, from
Eq. (12)-(14), the solutions of ZA, PZA, and PPZA
are given as follows:

S(1) = −εe−r2/2 , (27)

S(2) = −3

7
ε2e−r2

, (28)

S(3) = − 46

189
ε3e−3r2/2 . (29)

In our analysis, we set the value of ε as follows:

ε = ± 1

60
. (30)

Under this condition, the initial density fluctuation at
r = 0 becomes δ = ±0.05. Then the scale factor is set
as a = 0.0167(= 1/60) at the initial condition. In the
case where ε > 0, the caustics appear at a = 1 in ZA.
The initial peculiar velocity is equal with that given
by the growing mode in ZA.

In past analyses [4, 5], homogeneous spherical col-
lapse and void evolution have been analyzed. Here we
consider spherical but inhomogeneous density fluctua-
tion. We investigate time evolution in the dust model
first because it may produce a result that differs from
that of past analyses.

Fig. 2 shows the time evolution of the Mexican-hat
type density fluctuation in the dust model. For spher-
ical collapse, as well as in the past analyses, when
we considered higher order perturbation, the occur-
rence time of the caustics becomes fast [4–6]. The
caustic appears with an exact solution at a ' 0.55.
On the other hand, the growth of the fluctuation be-
comes gentle, and the caustic does not appear in AA.
For void evolution, the evolution of the density fluc-
tuation stops gradually with PZA, and it starts to
proceed in reverse. When we consider long-time evo-
lution, PPZA deviates from an exact solution greatly
more than ZA does. These results correspond to past
analyses considering homogeneous spherical distribu-
tion.
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Figure 1: Mexican-hat type model. The average of density fluctuation over the whole space becomes zero.
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Figure 2: The evolution of the spherical-symmetric (the Mexican-hat type) density fluctuation at r = 0 in dust models.
(a) The evolution of a density fluctuation in ZA, PZA, PPZA, the exact model, and AA in the case where ε > 0. The
viscosity parameter in AA is set as ν = (1/512)2. The approximation is improved by higher order perturbation. In the
exact model, the caustic appears at a ' 0.55. On the other hand, the density fluctuation evolves gently in AA. (b) The
same as (a) but the case where ε < 0. In PZA, the fluctuation becomes positive during evolution. Later (a > 0.6),
PPZA deviates from an exact solution greatly more than ZA does.

When we consider the effect of pressure, (Eq. (8)),
how does the behavior of the density fluctuation
change? These results are shown in Fig. 3. The pres-
sure suppress the evolution of the density fluctuation.
In the spherical-symmetric case, not only the pres-
sure term but also the gravity term contains non-linear
terms. Therefore, when we consider a full-order cal-
culation, the contribution of not only the pressure but
also the gravity becomes strong. Then if we choose a
small value for KJ , the fluctuation sometimes grows
earlier than in the case of linear approximation (Fig. 3
(a), (c), and (e)). In either case, the general tendency
of the evolution of the fluctuation does not differ very
much. According to Fig. 3 (a), (c), and (e), linear
approximation of the pressure model seems to good
until the quasi-nonlinear regime develops. The final
state is unchanged, though a few differences are seen
in the growth of the fluctuation, oscillatory amplitude,
and period. In other words, even if the full-order cal-
culation is considered, it is very difficult to explain
the origin of the viscosity term in AA by the pressure
model.

Next, we mention the evolution of a void (the case
where ε < 0). When we consider a full-order calcula-
tion, unrealistic behavior, such as linear approxima-
tion in the case where γ = 5/3 (Fig. 3 (b)), does not
appear. Furthermore, the oscillation of the fluctuation

is suppressed, and the growth of the fluctuation comes
to look like that of AA. In the evolution of the void,
the linear approximation of the pressure model seems
good until δ ' −0.5. When we do not introduce linear
approximation, the oscillation of the density fluctua-
tion is almost imperceptible (Fig. 3 (b), (d), and (f)).

Although we can realize a void evolution in AA with
the pressure model, we cannot reproduce the existence
of a stable nonlinear structure. In other words, it is
very difficult to find the origin of artificial viscosity in
AA with the isotropic velocity dispersion.

According to our calculation in linear approxima-
tion, the amplitude and the period of the oscillation
of the fluctuation in the intermediate state obviously
depends on γ. Although the tendency of the evolution
of the fluctuation in the case of γ = 4/3 looks like AA,
the snapshot of the density field will be different from
that in AA.

As for the validity of the linear approximation in
the pressure model, the approximation is rather good
until a quasi-nonlinear regime develops.
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4. The effect of the higher -order
appr oximation

We have derived perturbative solutions for the pres-
sure model up to the third order [19]. For detail, we
show our paper [19]. Here we briefly mention the re-
sult. Even if we restrict ourselves to the simplest case,
the case of γ = 4/3 in the E-dS model, the third-order
perturbative solutions become very complicated.

We have analyzed a planar model. The effect of the
higher-order approximation suppresses the evolution
of the density fluctuation. In this model, the difference
between the Lagrangian approximations still be very
small even just before shell-crossing.

In the one-dimensional model, the pressure only
affects the nonlinear effect. However, in the three-
dimensional realistic model, the gravitational force
also affects the nonlinear effect, and the difference be-
tween first-, second-, and third-order approximation
obviously appears. In fact, according to the compar-
ison between the first-order approximation and full-
order numerical calculation, the difference becomes
large in the strongly nonlinear region [18].

5. Summar y

We analyzed the corresponding relation with the
viscosity term in AA and the velocity dispersion us-
ing spherical-symmetric case. In long-duration evolu-
tion, even if we consider full-order effects, the caustics
will be formed. Though behavior similar to that of
AA can be seen with the pressure model, more con-
sideration is necessary for establishing the existence
of stable nonlinear structure.

Next, we consider another question. When we an-
alyze structure formation in the fluid with pressure,
can we learn whether the Lagrangian linear pertur-
bation is valid or not? From our analyses, until a
quasi-nonlinear regime develops, the linear approxi-
mation of the pressure model seems rather good from
the comparison with a full-order numerical calcula-
tion. Therefore, for example, if the interaction in some
kind of dark matter can be described by the effective
pressure, we can examine the behavior of the density
fluctuation in a quasi-nonlinear stage. Furthermore,
when we compare the observations and the structure
that is formed by using the pressure model, we can
give a limitation to the nature of the dark matter.

In our analysis for a planar model, the effect of the
third-order perturbation seems very small even at the
nonlinear stage. However, our result does not show
that we can ignore the third-order perturbation easily,
because the nonlinear term of the gravitational force
disappears in the planar model. When we consider the
effect of nonlinear pressure and gravitational force, the
third-order perturbation is expected as a powerful tool
to treat high-density regions.
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Figure 3: The evolution of a density fluctuation at r = 0 in the spherical-symmetric case. These figures show the
evolution in AA and the pressure models (linear approximation and the full-order calculation). These figures show the
case where ε > 0. (a) In the case where ε > 0 and γ = 1. In the pressure model, linear approximation seems valid until
δ ' 1. After that, in linear approximation, the fluctuation oscillates violently. In a strongly nonlinear region (δ > 10),
even if we consider full-order calculation in the pressure model, the evolution of a fluctuation similar to AA cannot be
reproduced. (b) The same as (a), but here ε < 0. As in the case where ε > 0, when the fluctuation evolve fully
(δ < −0.5), the fluctuation begins to oscillate. Finally the fluctuation decays and approaches to 0. (c) The same as (a),
but here γ = 4/3. In the pressure model with linear approximation, the fluctuation oscillates, and the caustic appears
at a ' 1.44. When we consider a full-order equation, although we can delay the density divergence, we cannot avoid
the formation of the caustic. (d) The same as (b), but here γ = 4/3. In the linear approximation in the pressure model,
although the fluctuation oscillates, the density asymptotically decreases. In the pressure model, when we consider a
full-order calculation, we can realize the evolution of a fluctuation similar to that of AA. (e) The same as (a), but here
γ = 5/3. In the pressure model with the linear approximation, the oscillation of the fluctuation in the intermediate
state grows very large. Then the caustic appears at a ' 1.28. When we consider a full-order equation, the density
diverges a little to the outside at a ' 1.14, and the model fails. (f) The same as (b), but here γ = 5/3. In the linear
approximation in the pressure model, the density fluctuation becomes positive during evolution because the oscillation
of the fluctuation grows very large. On the other hand, when we consider a full-order equation, it is different from
linear approximation, the density fluctuation always remaining negative.
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