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We discuss a numerical method to compute the homogeneous solutions of the Teukolsky equation. We use the
formalism developed by Mano, Suzuki and Takasugi, in which the homogeneous solutions of the radial Teukolsky
equation are expressed in terms of two kinds of series of special functions, and the formulas for the asymptotic
amplitudes are derived explicitly. In this formalism, we have to solve the continued fraction equation and
determine the “renormalized angular momentum parameter”. Although this parameter has been assumed to be
real number, we find that it becomes complex number as the angular frequency becomes large. We check that
these solutions of the continued fraction equation can be used to determine the homogeneous solution of the
Teukolsky equation. We also compute the energy flux of the gravitational waves from a particle in circular orbits
on the equatorial plane around a Kerr black hole and compare our results with a direct numerical integration
method. We find that both methods produce consistent results. These facts prove the validity to use the
complex solutions of the continued fraction equation to describe the homogeneous solutions of the Teukolsky
equation.

1. INTRODUCTION

Laser Interferometer Space Antenna (LISA) is ex-
pected to be launch in 2012. LISA has the best sen-
sitivity around mHz band and it can detect gravita-
tional waves from inspirals of white dwarfs, neutron
stars or solar mass black holes into a supermassive
black hole and so on. Gair et al.[1] estimated the
number of such event rates are expected to be about
600 by 3 years observation for the inspirals of 10M�

black holes into 106M� supermassive black hole. If
we can detect and observe such gravitational waves,
we may extract information of these systems such as
distance to the source, masses of binary, spin of the
star, geometry of black hole space time and so on. In
the matched filtering technique, which requires theo-
retical waveforms to be correlated with the data, we
will need very accurate theoretical waveforms to ex-
tract astrophysical information of the source although
we may not need it in detection.

To predict the waveforms of the extreme mass ratio
inspirals, we adopt the black hole perturbation ap-
proach. In this approach, a supermassive black hole
is taken to be a background (Kerr black hole), and
we deal with a spiraling compact object as a source of
the perturbation. In this context, the Teukolsky equa-
tion describes the evolution of a perturbation of the
Kerr black hole spacetime. The standard approach to
solve the Teukolsky equation is based on the Green
function method. The Green function is expressed by
two kinds of homogeneous solutions of the Teukolsky
equation. The solution of the Teukolsky equation is
obtained by the integration of Green’s function multi-
plied by the source term, which is given by specifying
the orbit of the point particle. The orbit of the par-
ticle is specified by the three constants of motion, the
energy, the z-component of the angular momentum,
and the Carter constant. When the point particle

moves eccentric orbit on the equatorial plane, the or-
bits show “zoom-whirl” property as the eccentricity
becomes large[2]. If the orbit of the point particle
become more complicated, as in the standard case of
the sources for LISA, we have to trace the orbit for
much longer time than the dynamical time of the sys-
tem in order to integrate the source term multiplied
by the Green function with good accuracy. Although
the accuracy of 10−5, established in many previous
works, may be sufficient to detect gravitational waves
from the extreme mass ratio inspirals, it would be very
helpful for the future data analysis of LISA if we had
more efficient and accurate methods to compute the
homogeneous solutions of the Teukolsky equation to
calculate gravitational waves.

In Ref.[3], we adopt a formalism, originally de-
veloped by Leaver[4] and elegantly reformulated by
Mano, Suzuki and Takasugi (MST formalism)[5, 6],
in which the homogeneous solutions of the Teukolsky
equation are expressed in series of special functions.
We calculated the gravitational wave flux induced by
a particle in a circular orbit on the equatorial plane
around a Kerr black hole within accuracy at least 15
significant figures. And we showed the validity to
use MST formalism to solve the Teukolsky equation.
However when gravitational wave frequency became
large, we could not determine “renormalized angular
momentum parameter”, ν, which is one of the most
important variable in MST’s formalism.

In this paper, we investigate the solution of the con-
tinued fraction equation by which we determine ν. Al-
though this parameter has been believed to be real
number, we find that we can find it in the complex
region. Using these complex ν, we compute the en-
ergy flux of the gravitational waves from a particle in
circular orbits on the equatorial plane around a Kerr
black hole and compare these results with a direct nu-
merical integration method. We find that both results
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are consistent. These facts prove the validity to use
the complex solutions to describe the homogeneous
solutions of the Teukolsky equation. Throughout this
paper we use units with G = c = 1.

2. HOMOGENEOUS SOLUTIONS OF THE
TEUKOLSKY EQUATION

The homogeneous Teukolsky equation is given by

∆2 d

dr

(

1

∆

dR`mω

dr

)

− V (r)R`mω = 0. (1)

The potential V (r) is given by

V (r) = −K2 + 4i(r − M)K

∆
+ 8iωr + λ. (2)

Here ∆ = r2 − 2Mr + a2 = (r − r+)(r − r−) with

r± = M ±
√

M2 − a2, K = (r2 + a2)ω − ma and λ is
the eigenvalue of the angular Teukolsky equation.

In the MST’s formalism, the homogeneous solutions
of the Teukolsky equation are expressed in terms of
special functions [5, 6]. We consider a homogeneous
solution, Rin

lmω, which has purely ingoing wave prop-
erty at the horizon, but has both ingoing wave prop-
erty and outgoing property at infinity.

We transform the incoming solution Rin
lmω as

Rin
`mω = eiεκx(−x)−s−i(ε+τ)/2(1 − x)i(ε−τ)/2pin(x).(3)

We define pin by

pin(x) =

∞
∑

n=−∞

anF (aν
n, bν

n; cν
n; x). (4)

where x = ω(r+ − r)/εκ, ε = 2Mω, κ =
√

1 − q2, q =
a
M , τ = ε−mq

κ , aν
n = n + ν + 1 − iτ , bν

n = −n − ν − iτ ,
cν
n = 1 − s − iε − iτ and F (α, β; γ; x) is hypergeo-

metric function. We note that “renormalized angular
momentum” ν does not appear in the original Teukol-
sky equation. This parameter is introduced in order to
converge the series expansion Eq.(4) and determined
later.

Substituting the Eq.(3) into Eq.(1), we find that the
expansion coefficients of the series of hypergeometric
functions {an} satisfy three-term recurrence relation
given by

αν
nan+1 + βν

nan + γν
nan−1 = 0, (5)

where

αν
n =

iεκ(n + ν + 1 + s + iε)

(n + ν + 1)

× (n + ν + 1 + s − iε)(n + ν + 1 + iτ)

(2n + 2ν + 3)
, (6)

βν
n = −λ − s(s + 1) + (n + ν)(n + ν + 1) + ε2

+ε(ε − mq) +
ε(ε − mq)(s2 + ε2)

(n + ν)(n + ν + 1)
, (7)

γν
n = − iεκ(n + ν − s + iε)

× (n + ν − s − iε)(n + ν − iτ)

(n + ν)(2n + 2ν − 1)
. (8)

In MST formalism, solving the Teukolsky equation
is reduced to determine a parameter ν. Dividing
Eq.(5) by an and setting n = 0, we obtain the fol-
lowing equation.

g0(ν) ≡ βν
0 + αν

0R1 + γν
0 L−1 = 0, (9)

where R1 and L−1 are expressed by the continued
fractions,

Rn(ν) ≡ an

an−1
=

−γν
n

βν
n + αν

nRn+1

=
−γν

n

βν
n − αν

nγν
n+1

βν
n+1 − αν

n+1γ
ν
n+2

βν
n+2 − · · ·

, (10)

Ln(ν) ≡ an

an+1
=

−αν
n

βν
n + γν

nLn−1

=
−αν

n

βν
n − αν

n−1γ
ν
n

βν
n−1 − αν

n−2γ
ν
n−1

βν
n−2 − · · ·

. (11)

The minimal solution sequence of the expansion coef-
ficients {an} will be derived from Eqs.(10) and (11) if
“renormalized angular momentum” ν is a root of the
continued fraction equation Eq.(9). The problem is
now to seek ν which satisfy Eq.(9).

3. SOLUTIONS OF THE CONTINUED
FRACTION EQUATION

We can determine a parameter ν by solving the con-
tinued fraction equation Eq.(9). When ε = 2Mω is
small, there is an analytic expression of a solution ν
in the form of a series of ε given by

ν = l +
1

2l + 1

[

−2 − s2

l(l + 1)
− (l2 − s2)2

(2l − 1)2l(2l + 1)

+
[(l + 1)2 − s2]2

(2l + 1)(2l + 2)(2l + 3)

]

ε2 + O(ε3). (12)

Thus, when ε → 0, ν takes integer value, ν = l. As
an example case, we consider l = m = 2, q = 0. As ω
increases from 0, the solution ν decreases from l and
approaches l − 1/2 at around Mω = 0.36. If Mω is
larger than 0.36, the real solution ν disappear. The
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function g0(x) is shown in Fig.1 in the cases Mω ≤
0.36 and in Fig.2 in the cases Mω > 0.36. At first
glance, in Fig.2, there seems to be a solution at x =
l − 1/2 = 3/2, x = 1 or x = 2. These are solutions
of g0(x) = 0 mathematically, but they don’t produce
the homogeneous solution of the Teukolsky equation.

Next we consider the solution of g0(z) = 0 in the
complex plane of z in the case Mω is above the
critical value and we can not find the real solution.
In Fig.3, we plot a contour of |g0(z)| in the case
Mω = 0.5. We find that there is a minimal around
Re(z) = 3/2 and Im(z) = 0.36. In Fig.4, we plot
Re(g0(z)) and Im(g0(z)) as a function of Im(z) at
Re(z) = 3/2. It is evident that there is a solution
at around z = 3/2 + 0.36i. The precise value of the
solution is z = 3/2 + 0.36188061539416i. It is also
suggested from Fig.3 that there are no solutions other
than this value. We find that when there are no real
solutions, complex solution always exists. Further,
the real part of the complex solutions are always half-
integer or integer. These property is the same in the
case of other parameters, s, l, m and q.
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Figure 1: The function g0(x) for Mω = 0.20 and 0.36.
s = −2 and q = 0. There are real solutions in these cases.

4. NUMERICAL RESULTS

In this section, we confirm the results of Sec.3 by
computing the energy flux of the gravitational waves
induced by a test particle orbiting in circular and
equatorial plane around a Kerr black hole. The com-
plete formulas are given in Appendix A of [3]. We
compare our results, in the case r0 = 1.55M, q = 0.99,
and ν is complex, with that of Kennefick1, which are

1This data was calculated by D. Kennefick based on his pre-
vious work[2], and was kindly provided for us.
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Figure 2: The function g0(x) for Mω = 0.37, 0.40 and
0.50. s = −2 and q = 0. There are no real solution in
these cases.
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Figure 3: The |g0(z)| in the case Mω = 0.50, s = −2,
l = m = 2 and q = 0. There is a complex solution at
ν = 1.5 + 0.36188061539416i.
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Figure 4: The real and imaginary part of the function
g0(z) at Re(z) = 1.5 in the case Mω = 0.50, s = −2,
l = m = 2 and q = 0. The real and imaginary part
become 0 at Im(z) = 0.36188061539416.
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Table I Relative error of the energy flux, up to ` = 7, between Ref.[2] and our results when r0 = 1.55M, q = 0.99, and ν

is complex.

l | m | Re(ν) Im(ν) Numerical integration This paper Relative error

2 2 1.5 1.1374192131794 3.568050135 × 10−2 3.568033154338851 × 10−2 4.76 × 10−6

3 3 2.5 1.4249576682707 2.152962111 × 10−2 2.152959342790158 × 10−2 1.29 × 10−6

4 4 3.5 1.7677955367662 1.230541176 × 10−2 1.230541952573211 × 10−2 6.31 × 10−7

5 4 4.5 0.3735768429955 1.933923538 × 10−5 1.933924400940079 × 10−5 4.46 × 10−7

5 5 4.5 2.1437000387424 7.259841388 × 10−3 7.259849874157195 × 10−3 1.17 × 10−6

6 5 5.5 0.8032470628900 1.536518877 × 10−5 1.536520289551414 × 10−5 9.19 × 10−7

6 6 5.5 2.5395166388946 4.404590776 × 10−3 4.404599359654937 × 10−3 1.95 × 10−6

7 6 6.5 1.2521347909128 1.148793520 × 10−5 1.148795883734041 × 10−5 2.06 × 10−6

7 7 6.5 2.9481395894691 2.726943363 × 10−3 2.726949666682515 × 10−3 2.31 × 10−6

computed by numerical integration, in Table I. We
find that our numerical results agree with that of [2]
for 5-7 significant figures, which are consistent with
the accuracy of the data by the numerical integration
method. This fact shows the validity to use the com-
plex ν to calculate the homogeneous solutions of the
Teukolsky equation.

5. SUMMARY AND CONCLUDING
REMARKS

We investigated solution of the continued fraction
equation, which is derived by Leaver and Mano et al.
in the formalism deal with the homogeneous solutions
of the Teukolsky equation, and determine the “renor-
malized angular momentum” ν. Although we could
not find ν in real region when gravitational wave fre-
quency becomes large, we can find it in the complex
region. In order to verify the existence of complex
ν, we compute the power radiated by gravitational
waves from a particle in circular orbit in equatorial
plane around a Kerr black hole using complex ν and
compare our results with that of a direct numerical
integration method. We find that relative errors of
both methods are about 10−5. Thus, the range of
the gravitational frequency in which the MST formal-
ism can be used for numerical analysis becomes much
wider than that where ν is assumed to be real. We
will apply MST’s formalism using the complex solu-
tions of ν to compute the gravitational waves from a

compact star in generic orbits around a supermassive
black hole in the future.
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