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The strong CP problem was solved by Peccei & Quinn by introducing axions, which are a viable candidate for
DM. Here the PQ approach is modified so to yield also Dark Energy (DE), which arises in fair proportions,
without tuning any extra parameter. DM and DE arise from a single scalar field and, in the present ecpoch,
are weakly coupled. Fluctuations have a fair evolution. The model is also fitted to WMAP release, using a
MCMC technique, and performs as well as LCDM, coupled or uncoupled Dynamical DE. Best–fit cosmological
parameters for different models are mostly within 2–σ level. The main peculiarity of the model is to favor high
values of the Hubble parameter.

1. INTRODUCTION

Axions are likely to be the Dark Matter (DM) that
cosmological data require. Axions arise from the so-
lution of the strong CP problem proposed by Peccei
& Quinn in 1977 ([1], PQ hereafter), who suggested
that θ parameter, in the effective lagrangian term

Lθ =
αs

2π
θ G · G̃ (1)

(αs: strong coupling constant, G: gluon field ten-
sor), causing CP violations in strong interactions, is
a dynamical variable. Under suitable conditions θ ap-
proaches zero in our epoch, so that the term (1) is sup-
pressed, while residual θ oscillations yield DM [2, 3].

In the PQ scheme, θ is the phase of a complex field
Φ = φeiθ/

√
2; its evolution is set by the potential

V (|Φ|) = λ [ |Φ|2 − F 2
PQ ]2 , (2)

whose U(1) invariance breaks when T < FPQ (the
PQ energy scale, which shall be ∼ 1012GeV). Then
φ settles at the potential minimum, while θ takes a
random value, different in different horizons. When
chiral symmetry also breaks down, during the quark–
hadron transition, a further term

V1 =
[

∑

q

〈0(T )|q̄q|0(T )〉mq

]

(1 − cos θ) (3)

must be added to the lagrangian, because of instan-
ton effects. At T ' 0, the square bracket approaches
m2

πf2
π (mπ, fπ: π–meson mass, decay constant).

The dependence on the site of initial θ’s will
causes later adjustments, as soon as the potential (3)
switches on. When θ is small, V1 ∝ θ2 and the θ field,
undergoing harmonic oscillations, is DM.

Here we wish to discuss recent work [4], where the
NG potential (2) is replaced by a tracker potential [5].
Then, instead of settling on a value FPQ, φ continues
to evolve over cosmological times, at any T . As in
the PQ case, the potential involves a complex field Φ
and is U(1) invariant. Its phase is horizon–dependent

but, just as in the PQ case, evolves only after chiral
symmetry breaks, yielding a term similar to (3).

At variance from the PQ case, however, the θ evolu-
tion starts and continues while also φ is still evolving.
This goes on until our epoch, when φ is expected to
account for Dark Energy (DE), while, superimposed
to such slow evolution, faster transversal θ oscillations
occur, accounting for DM. This scheme, where the Φ
fields bears a dual role, with its modulus and phase,
will be dubbed here dual axion model.

The question is whether φ and θ dynamics interfere,
still allowing θ to take values so small to solve the CP
problem and preserving harmonic oscillations allow-
ing the prescribed amount of DM. Here we show that
the reply is positive. As it can be expected, however,
DM and DE are dynamically coupled, although this
coupling weakens as we approach the present era.

Here we also consider a generalization of the
SUGRA potential [5] as an example of tracker poten-
tial. With an energy scale Λ ∼ 1010GeV, this model
allows suitable values for today’s DM and DE densi-
ties, while θ is even smaller than for PQ. DM density
fluctuations are also able to grow and to account for
the observed large scale structure. We fit the expected
angular CBR spectra to data, finding that this model
substantially performs as well as ΛCDM.

2. LAGRANGIAN THEORY

In the dual-axion model we start from the la-
grangian L =

√−g{gµν∂µΦ∂νΦ − V (|Φ|)} which can
be rewritten in terms of φ and θ, adding also the term
breaking the U(1) symmetry, as follows:

L =
√−g

{

(1/2) gµν

[

∂µφ∂νφ + φ2∂µθ∂νθ
]

−
− V (φ) − m2(T, φ)φ2(1 − cos θ)

}

.

Here gµν is the metric tensor. We shall assume that
ds2 = gµνdxµdxν = a2(dτ2 − ηijdxidxj), so that a is
the scale factor, τ is the conformal time; greek (latin)
indeces run from 0 to 3 (1 to 3); dots indicate dif-
ferentiation in respect to τ . The mass behavior for
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T ∼ ΛQCD will be detailed in Section 3. The equa-
tions of motion read

θ̈ + 2(ȧ/a + φ̇/φ) θ̇ + m2a2 sin θ = 0 , (4)

φ̈ + 2(ȧ/a) φ̇ + a2V ′(φ) = φ θ̇2, (5)

while the energy densities ρθ,φ = ρθ,φ;kin+ρθ,φ;pot and
pressures pθ,φ = ρθ,φ;kin−ρθ,φ;pot, under the condition
θ � 1, are obtainable from

ρθ,kin = φ2θ̇2/2a2 , ρθ,pot = m2(T, φ)φ2θ2/2 ,

ρφ,kin = φ̇2/2a2 , ρφ,pot = V (φ) . (6)

3. AXION MASS

According to eq. (4), the axion field begins to os-

cillate when m(T, φ)a ' 2( ȧ/a + φ̇/φ ). In the dual–
axion model, just as for PQ, axions become massive
when the chiral symmetry is broken by the formation
of the q̄q condensate at T ∼ ΛQCD. Around such T ,
therefore, the axion mass grows rapidly. In the dual–
axion model, however, a slower growth takes place also
later, because of the evolution of φ. Then m(T, φ) is

mo(φ) = mπfπ/φ = (0.0062/φ) GeV . (7)

Since φ ∼ mp today, the axion mass is now mo ∼
5 · 10−13eV, while, according to [6], at high T :

m(T, φ) ' 0.1 mo(φ)(ΛQCD/T )3.8 . (8)

This expression must be interpolated with eq. (7), to
study the fluctuation onset for T ∼ ΛQCD. We solved
the equations of section 2 by assuming

m(T, φ) = mo(φ)(0.1
1

3.8 ΛQCD/T )3.8(1−
a

ac

) a < ac

m(T, φ) = mo(φ) a > ac

with ac = 2.16 · 10−12. With the selected value, when
T <∼ 0.5 ΛQCD, m(T, φ) already approaches its low–T
behavior mo(φ). Let us finally outline that eqs. (7)
and (8), as well as the above interpolation, show that
m(T, φ)φ is φ–independent, as is required to obtain
the equation of motion (5). Fig.(1) shows the (low–)z
dependence of mo(φ). Notice the rebounce at z ∼ 10,
whose impact on halo formation could be critical [7].

4. THE CASE OF SUGRA POTENTIAL

When θ performs many oscillations within a Hubble
time, then 〈ρθ,kin〉 ' 〈ρθ,pot〉 and 〈pθ〉 ' 0. By using
eqs. (4),(5),(6), it is easy to see that

ρ̇θ +3Hρθ =
ṁ

m
ρθ , ρ̇φ +3H(ρφ +pφ) = −ṁ

m
ρθ . (9)

Figure 1: φ variations cause a dependence of the effective
axion mass on scale factor a, which is shown here.

When m is given by Eq (8) , ṁ/m = −φ̇/φ−3.8 Ṫ /T .

At T ' 0, instead, ṁ/m ' −φ̇/φ. Here below, the
indices θ, φ will be replaced by DM ,DE . Eqs. (9) show
an energy exchange between DM and DE. The former
eq. (9) can then be integrated, yielding ρDM ∝ m/a3.
This law holds also when T � ΛQCD, and then the
usual behavior ρDM ∝ a−3 is modified, becoming

ρDMa3φ ' const. (10)

Let us now assume that the potential reads

V (φ) = (Λα+4/φα) exp(4πφ2/m2
p) (11)

(no θ dependence); in the radiative era, it will then be

φα+2 = gαΛα+4a2τ2 , (12)

with gα = α(α + 2)2/4(α + 6). This tracker solution
holds until we approach the quark–hadron transition.
Then, in Eq. (5), the DE–DM coupling term, φθ̇2,
exceeds a2V ′ and we enter a different tracking regime.

This is shown in detail in Fig.(2), obtained for mat-
ter (baryon) density parameters Ωm = 0.3 (Ωb =
0.03) and Hubble constant h = 0.7 (in units of 100
km/s/Mpc). In particular, Fig. (2a) shows the tran-
sition between these tracking regimes. Fig. (2b) then
shows the low–z behavior (1+z = 1/a), since DE den-
sity exceeds radiation (z ' 100) and then overcomes
baryons (z ' 10) and DM (z ' 3). Fig. (2c) is a
landscape picture for all components, down to a = 1.

Notice the a dependence of ρDM , occurring accord-
ing to Eq. (10). In Fig. (3) the related behaviors of the
density parameters Ωi (i = r, b, θ, φ, i.e. radiation,
baryons, DM, DE) are shown.

In general, once the density parameter ΩDE (at
z = 0) is assigned, a model with dynamical (coupled or
uncoupled) DE is not yet univocally determined. For
instance, the potential (11) depends on the parame-
ters α and Λ and one of them can still be arbitrarily
fixed. Other potentials show similar features.

In this model such arbitrariness no longer exists.
Let us follow the behavior of ρDM , backwards in time,
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Figure 2: Density behaviors vs. scale factor.

until the approximation θ � 1 no longer applies. This
must approximately coincide with the time when

2(ȧ/a + φ̇/φ) ' m(T, φ) a (13)

and θ enters the oscillation regime. At that time, ac-
cording to Eq. (10), which is marginally valid up to
there, and taking θ = 1,

ρDM ' ρo,DM
φo

φ(a)

1

a3
' m2[T (a), φ(a)] φ2(a) . (14)

The system made by eqs. (13) and (14), owing to
eq. (12), allows to obtain (i) the scale factor ah when
fluctuations start and (ii) the scale Λ in the potential
(11). To do so, the present density of DM, ρo,DM ,
(or ΩDM ) must be assigned. But, as we shall soon
outline, the observational value of the density in the
world forces ah to lay about the quark–hadron tran-
sition, while also Λ is substantially fixed.

The plots in the previous section are for ΩDM =
0.27; then Λ ' 1.5 · 1010GeV and ah ∼ 10−13 are
required by the system. But, when ΩDM goes from
0.2 to 0.4, log10(Λ/GeV) (almost) linearly runs in the
narrow interval 10.05–10.39 , while ah steadily lays at
the eve of the quark–hadron transition.

Figure 3: Density parameters Ωi vs. scale factor a.

5. EVOLUTION OF INHOMOGENEITIES

Besides of predicting fair ratios between the world
components, a viable model should also allow the for-
mation of structures in the world.

The dual axion model belongs to the class of cou-
pled DE models treated by Amendola [8], with a time–
dependent coupling C(φ) = 1/φ. A φ–MDE phase
therefore exists, after matter–radiation equivalence, as
the kinetic energy of DE is non–neglegible during the
matter–dominated era.

Fluctuation evolution is then obtained by solving
the equations in [7], with the above C(φ). The behav-
ior shown in Fig.(4) (left) is then found.

Fig (4) (center and right) compare fluctuation evo-
lutions the dual axion model (solid curves), with those
in an analogous ΛCDM model (dot–dashed curves)
and in a coupled DE model with constant coupling
C = 0.25

√
8πG ' 〈C(φ)〉 (dashed curves). As shown

by the plots, the overall growth, from recombination
to now is similar in dual axion and ΛCDM models,
being quite smaller than in DE models with constant
coupling. The differences of dual axion from ΛCDM
are: (i) objects form earlier and (ii) baryon fluctua-
tions keep below DM fluctuations until very recently.

6. COMPARISON WITH WMAP DATA

We shall then test the dual axion model towards
CMB data, together with other dynamical or coupled
DE cosmologies, by using a parameter space of 7 to
8 dimensions. We use a Markov Chain Monte Carlo
(MCMC) approach (e.g. [9]), just as in the original
analysis of WMAP first–year data [10], constraining
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Figure 4: Time evolution of DM and baryon fluctuations.

flat ΛCDM in respect to six parameters: Ωbh
2, Ωmh2,

h, n, the fluctuation amplitude A and the optical
depth τ . Notice that, with the naming convention
used here, Ωm ≡ Ωb + ΩDM .

Here, three classes of DE are considered: (i)
SUGRA dynamical DE, requiring the introduction of
the parameter λ = log10(Λ/GeV), the energy scale
in the potential (12). (ii) Constant coupling SUGRA
DE, requiring a further parameter, the coupling β =
C (3m2

p/16π)1/2. (iii) Coupled models including the
dual axion case. For this model the parameter β does
not exist, being C = φ−1 and also the scale Λ is con-
strained by the requirement that ΩDE lays in a fair
range (also solving the strong CP problem), so that Λ
and ΩDE are no longer independent parameters. The
(iii) class of model, that we call φ−1 models, is how-
ever set keeping λ as a free parameter. We aim to
test whether data constrain λ into the right region,
turning a generic φ−1 model into a dual–axion model.

To use the MCMC, we need an algorithm provid-
ing the Cl’s. Here we use our optimized extension of
CMBFAST [11], able to inspect the cosmologies (i),
(ii) and (iii). Then, the likelihood of each model is
evaluated through the publicly available code by the
WMAP team [12] and accompanying data [13].

6.1. Results

The basic results of our analysis are summarized in
the Table I, II and III. For each model category we
list the expectation values 〈x〉 of each parameter x
and the associated variance σx; we also list the values
of the parameters of the best fitting models xmax.

Let us however remind that φ−1 models, whose fit-
ting results are reported in Table III, include the dual–
axion model, but many other cases as well. Our ap-
proach was meant to test whether CMB data carry
information on λ and how this information fits the λ
range turning a φ−1 model into the dual–axion model.

At variance from uncoupled and costant-coupling
SUGRA models, WMAP data yield constraints on λ
for φ−1 models (see Table III) and the 2–σ Λ–interval
ranges from ∼ 10 to ∼ 3 · 1010GeV, so including the
dual–axion model. In Fig. (5) the CT

l spectra for all
best–fit models (apart of ΛCDM) are compared. At

Table I SUGRA parameters for uncoupled DE

x 〈x〉 σx xmax

Ωbh
2 0.025 0.001 0.026

ΩDMh2 0.12 0.02 0.11

h 0.63 0.06 0.58

τ 0.21 0.07 0.28

ns 1.04 0.04 1.08

A 0.97 0.13 1.11

λ 3.0 7.7 13.7

Table II SUGRA parameters in the presence of a
constant DE–DM coupling β.

x 〈x〉 σx xmax

Ωbh
2 0.024 0.001 0.024

ΩDMh2 0.11 0.02 0.12

h 0.74 0.11 0.57

τ 0.18 0.07 0.17

ns 1.03 0.04 1.02

A 0.92 0.14 0.93

λ -0.5 7.6 8.3

β 0.10 0.07 0.07

Table III SUGRA parameters for a φ−1 model.

x 〈x〉 σx xmax

Ωbh
2 0.025 0.001 0.026

ΩDMh2 0.11 0.02 0.09

h 0.93 0.05 0.98

τ 0.26 0.04 0.29

ns 1.23 0.04 1.23

A 1.17 0.10 1.20

λ 4.8 2.4 5.7

large l all models yield similar behaviors and this is
why no model category prevails. Discrimination could
be achieved by improving large angular scale observa-
tion, especially for polarization, so to reduce the errors
on small–l harmonics.

7. DISCUSSION

A first point worth outlining is that SUGRA (un-
coupled) models, bearing precise advantages in re-
spect to ΛCDM, are consistent with WMAP data.
The ratio w = p/ρ at z = 0, for most these mod-
els, fulfills the constraint w <∼ −0.80. However, these
models exhibit a fast w variation, and w becomes ∼

22nd Texas Symposium on Relativistic Astrophysics at Stanford University, Dec. 13-17, 2004

41105



Figure 5: CT
l spectra for the best fit SUGRA (solid line),

constant coupling (dotted line), φ−1–coupling (dashed)
and dual–axion (dot–dashed) models.

-0.6, -0.7 at z ∼ 1–2. In spite of this sharp decrease,
however, there is no conflict with data.

The results shown in the previous section were also
considered in the presence of some priors. For un-
coupled or constant–coupling SUGRA models, adding
priors scarsely affects conclusions. φ−1–models, in-
stead, are to be discussed separately.

In the first two categories of models opacity (τ) is
pushed to values even greater than in ΛCDM (see
also [14]). This can be understood in two comple-
mentary ways: (i) Dynamical DE models, in general,
exhibit a stronger ISW effect, increasing CT

l in the
low–l plateau (e.g. [15]). To compensate this effect,
in the fit of data, the spectral index ns is pushed to
greater values. In turn, owing to the τ–n degeneracy,
this is compensated by increasing τ . (ii) If the TE
correlation is also considered, it is worth reminding
that dynamical DE lowers the TE correlation at low
l [16]. To fit the same observed correlation level, a
greater τ is therefore favored.

Greater τ ’s have an indirect impact also on Ωbh
2

whose best–fit value becomes greater, although con-
sistent with ΛCDM within 1–σ. If we impose, as a
prior, Ωbh

2 = 0.0214 ± 0.0020 (BBNS estimates [17]),
h shifts slightly below HST findings, still well within
1–σ. We shall consider the effect of a prior also on h.

The prior on Ωbh
2 affects reionization and the spec-

tral slope: τ and ns are lowered to match WMAP’s
findings. The prior on h, in the absence of coupling,
favors low–λ models, closer to ΛCDM. Quite in gen-
eral, in fact, the sound horizon at decoupling is unaf-
fected by the energy scale Λ, while the distance of the
last–scattering–band is smaller for greater λ’s. Then,
as λ increases, a lower h is favored to match the po-
sition of the first peak. In the presence of coupling,
there is a simultaneous effect on β: greater β’s yield

a smaller sound horizon at recombination, so that the
distribution on h is smoother.

φ−1 models exhibit rather different features. Pa-
rameters are more strongly constrained in this case,
as already outlined for the scale Λ. The main puz-
zling feature of φ−1 models is that large h is favored:
the best–fit 2–σ interval does not extend below 0.85 .

The problem is more severe for dual–axion λ’s val-
ues, whose preferred values are well within 2–σ. This
model naturally tends to displace the first CT

l peak
to greater l (smaller angular scales) as coupling does
in any case does. The model, however, has no ex-
tra coupling parameter and the intensity of coupling
is controlled by the scale Λ. Increasing this scale re-
quires a more effective compensation and still greater
values of h are favored.

This effect appears however related to the choice
of SUGRA potentials, which is just meant to pro-
vide a concrete framework for the dual axion model.
To deepen its analysis, the contribution to the axion
abundance due to the decay of possible topological
defects should also be discussed.

A previous analysis of WMAP limits on constant
coupling models had been carried on by [19]. Their
analysis concerned potentials V fulfilling the relation
dV/dφ = BV N , with suitable B and N . They also
assumed that τ ≡ 0.17. Our analysis deals with a
different potential and allows more general parame-
ter variations. The constraints on β we find are less
severe. It must be however outlined that β > 0.1–
0.2 is forbidden by a non–linear analysis of structure
formation [7].

8. CONCLUSIONS

The first evidences of DM date some 70 years ago,
although only in the late Seventies limits on CMB
anisotropies made evident that a non–baryonic com-
ponent had to be dominant. DE could also be dated
back to Einstein’s cosmological constant, although
only SNIa data revived it, soon followed by data on
CMB and deep galaxy samples.

Axions have been a good candidate for DM since the
late Seventies, although various studies, as well as the
occurrence of the SN 1987a, strongly constrained the
PQ scale around values 1010 <∼ FPQ

<∼ 1012GeV. Con-
tributions to DM from topological singularities (cos-
mic string and walls) narrowed the constraints to FPQ.
Full agreement on the relevance of such contributions
has not yet been attained and, in this paper, they are
still disregarded, while they could cause shifts in our
quantitative predictions. This point must be therefore
deepened in further work.

The fact that DM and DE can both arise from scalar
fields, just by changing the power of the field in effec-
tive potentials, already stimulated the work of various
authors. A potential like (11) was considered in the
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Figure 6: The onset of coherent axion oscillations, due to
the increase of m(T, φ), causes the behaviors of ρθ,pot,
ρθ,kin (a) and ωφ,θ = pφ,θ/ρφ,θ (b) shown here.

so–called spintessence model [20]. According to the
choice of parameters, Φ was shown to behave either
as DM or as DE. Padmanabhan & Choudhury [21],
instead, built a tachionic model where DM and DE
arise from a single scalar field.

Here, the scalar field Φ, accounting for both DE and
DM, arises in the solution of the strong–CP prob-
lem: as in the PQ model, in eq. (1) θ is turned into
a dynamical variable, the phase of Φ. Here, however,
the modulus of Φ increases in time, approaching mp

by our cosmic epoch, when it is DE; meanwhile, θ
is driven to approach zero, still performing harmonic
oscillations which are axion DM. The critical time for
the onset of coherent axion oscillations is the eve of
the quark–hadron transition, because of the rapid in-
crease of the axion mass m(T, φ). In our dual axion
scheme, the constant FPQ scale of the PQ model is
replaced by the slowly varying field φ. Instead of the
scale FPQ, data fix the scale Λ, in the SUGRA poten-
tial. This unique setting provides DM and DE in fair
proportions.

We therefore simultaneously solve the strong CP
problem and yield DM and DE in fair proportions by
setting a single parameter.
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