Alignment in Circular Colliders and Specific Requirements for LHC

J-B. Jeanneret CERN AB/ABP

IWAA 2004, CERN October 2004

Outline

- Closed orbit and tolerances
- Magnetic issues at LHC
- Aperture issues
- → Survey issues
- Conclusions

Closed orbit and tolerances

An issue for all machines : Closed Orbit errors

- Perfect machine, except for one QD mis-placed by $\Delta x = 1$ mm horizontally
- Without correction: ~∆x every 4th MQ with 1 MQ mis-placed
- With N_{MQ} =400 and random moves

→ $\Delta x = \text{root} (N) \Delta x/4 = 5 \text{mm r.m.s.}$ → 10-15 mm peak

• Larger ring : CO control more important (both good geometry and good correction system)

Mad model and correction algorithm, J. Wenninger

Alignment in LHC, IWAA 04, BJ

Residual after correction

- Usual case : no H-kicker at QD
- \rightarrow Non-local correction:

Perturbation not eliminated, and expanding over ~7 MQ

- r.m.s $\Delta x = 1$ mm over all MQ's and BPM's :
- $\rightarrow \Sigma_{\rm rms} \Delta x = 1.5 \ {\rm mm}$
- This without BPM resolution, missing BPM's, local coherent distortions, numeric matrix inversion errors ...
- $\Delta_{MQ} < 1.5 \text{mm}$, $\Delta_{BPM} < 0.5 \text{mm}$ (tol, total)

Mad model and correction algorithm, J. Wenninger

Experimental insertions

- High luminosity at LHC \rightarrow beam size at crossing σ =17 μ m
- $\beta_{MQX} = 5000 \text{ m} \text{ compared to } \beta_{arc} = 200 \text{ m}$
- Beam divergence $\sigma'_{MQX} = \sigma_{arc}/5$
- 2 opposite protons beams in the same tube : dipoles cannot do the job there
- \rightarrow CO corrections must be made ~2-300 m away
- Very critical, need MQX perfectly aligned with frequent remote checks and re-alignmet
- See A. Herty et al. Tuesday

Magnetic issues

LHC basic parameters - I

- Goal : Allow to discover a H-boson up to m_H = 400 GeV (and more)
 → Proton-proton Collisions at ~ 10 TeV + 10 TeV
 → Luminosity L = 10³⁴ cm⁻²s⁻¹ so : high stored current
- Fit in the LEP tunnel with arc curvature $\rho = 3606$ m

With a filling factor of 0.8 (need focussing, correctors, etc) :

$$\Rightarrow \rho_{\rm mb} = 0.8 \ \rho = 2800 \ m \text{ and } B = \frac{E}{0.3 \ \rho_{\rm mb}} = \frac{10^4 \ \text{GeV}}{0.3 \times 2800} = 12 \text{T}$$

- Classical 'warm' magnets : B < 2T
- \rightarrow Need superconductor magnets

LHC basic parameters - II

- Best candidates NbTi , with in practice $B_{best} \cong 9 T$
- This even with superfliud helium (Tc = 2.8 K at B=9T)
- →Beam Energy in collision : $E_{coll} \cong 7 \text{ TeV}$
- Finally: use existing injector : E_{inj} = 0.45 TeV
 → Fixes the r.m.s beam size σ = 1.2 mm
 → And the vacuum chamber size, see below

A super-conducting dipole field – basic theory

 $\vec{B}_1 + \vec{B}_2 = \frac{\mu_0 i}{2} [\vec{k} \wedge (\vec{r} + \epsilon \vec{i}) - \vec{k} \wedge (\vec{r} - \epsilon \vec{i})] = \mu_0 i \epsilon [\vec{k} \wedge \vec{i}] = \mu_0 i \epsilon \vec{j}$

But : to be perfect, $\epsilon \rightarrow 0$, $i \rightarrow$ infinity

Alignment in LHC, IWAA 04, BJ

 ϵ

i < o

The coils

- $\epsilon \approx 1$, not exactly $\epsilon \rightarrow 0$
- Cosine function not very close to textbook definition
- In spite of clever corrections, field map is not constant enough
- \rightarrow Need corrective elements
- $B = 9T \rightarrow NI = 1MA$ $\rightarrow EM \text{ forces} \sim 2MN/m$
- \rightarrow High mechanical stiffness

A super-conducting dipole field – in practice

Magnetic correction strategy

- Field map modify the tune, the chromaticity, etc
- They can reduce the dynamic aperture (beam lifetime, losses)
- Corrections are needed
- Multipole coils running inside the main coils:
 - Strong dB/dt of main field → strong inductive and persistant errors s.c. (non-resistive) in correcting coils (HERA)
- Rather: Autonomous correctors at the extremities
 - No inductive errors
 - But alignment issues

→ Transmutation of Magnetic problems into Survey issues! (see below)

Field map errors expressed as multipole expansion in unit 10⁻⁴ with latest coil-shape

N-pole	Ap1 inj/top	Apl inj/top	
b2	~ 1.3	~ -1.1	
b3	~ -4.5 / 3	~ -4.5 / 3	
b4	~ 0 / 0.2	~ 0 / 0.2	
b5	~ +1.0 / 0	~ +1.0 / 0	
b6	~ 0	~ 0	
b7	~ +0.3 /+0.7	~ +0.3 /+0.7	
b8	~ 0	~ 0	
b9	~ 0.8	~ 0.8	
a2	~ -0.4	~ -0.4	
a3	~ -0.26	~ -0.23	
a4	~ +-0.13	~ +-0.13	
a5	~ +0.03	~ +0.02	
аб	~ 0	~ 0	
a7	~ +0.04	~ +0.04	
a8	~ 0	~ 0	
a9	~ 0	Aligantent in I	

Use z = x + iy

$$B_y + iB_x = B_1 \sum_n (b_n + ia_n) \left(\frac{z}{17 \,\mathrm{mm}}\right)^{n-1}$$

Consider b_5 , then misalign spool by δ along y:

$$(y+\delta)^4 - x^4 = \ldots = 4y^3\delta + 6y2\delta^3 + \ldots$$

$$\implies a_4^{\rm fd} = \frac{4\delta}{R_r} b_5$$

The critical displacement δ_{cr} for $a_4^{fd} < a_4/2$ is :

$$\delta_{\rm cr} < rac{a_4^{
m fd}}{2b_5} rac{R_r}{4} = 0.3 ~{
m mm}$$

!! Much simplified, see S. Fartoukh LCC 2001-11 & FQWG March 2003 !! HC, TWAA 04, BJ

Beam based specification for spool piece

Beam Spec.	$\Delta x, \Delta z$	$\sigma(x), \sigma(y)$ w.r.t. tunnel	$\sigma(x), \sigma(y)$ w.r.t. cold mass *	σ(θ) w.r.t. tunnel **
Unit	[mm]	[mm]	[mm]	[mrad]
MCS	0.3	0.5	0.15	1.5
MCDO	0.3	0.5	0.15	2

*i.e. Magn. Axis w.r.t. cold mass mechanical mid-plane at ITP20

** Not different from $\sigma(\theta)$ w.r.t. cold mid-plane

Source : S.Fartoukh , LCC 2001-11 and FQWG 4th March 2003

Alignment in LHC, IWAA 04, BJ

Aperture issues

Beam Aperture - I

- Initially : cold bore with radius R= 25 mm (this after all the rest was fixed)
- Short bunch separation (25ns) and large population (1.1x10¹¹ p):
 - Multipacting + e-cloud
 → Need of a beam screen
- Ions finally trapped on the 2K cold bore
- But 3mm lost for aperture
- So please, Survey ...

Courtesy of N. Kos AT-VAC

Beam Aperture - II

- High beam intensity $N = 3000 \times 10^{11} p$
- With $\tau_{\text{beam}} = 20h$, $dN/dt_{\text{loss}} = 4 \times 10^9 \text{ p/s}$
- Quench with $dN/dt_{quench} = 10^7 p/s/m$
- With a margin factor m=100, need a collimation system with a capture efficiency ~ 10^4 (effective cascade absorbtion length ~1m)
- 2-stage collimation OK, but need pipe away by 4σ from collimator aperture

Beam Aperture - III

. . .

- $n_1\sigma + \delta\sigma = 1.1 \ (6+4)\sigma = 13 \ mm$
- a = CO + t + Ddp = 9 mm
- Remains $t \approx 2.5 \text{ mm}$
- Let skip the bargains about splitting t between Cold mass, Assembly, Survey

silver (blue line) and a few golden ones

Survey issues

What is needed

- 1) An object with its inner shape controlled down to $\Delta x \times \Delta z \cong 1.5 \times 0.7 \text{ mm}^2$ over 15m inside its cryostat
- 2) Relative axis error MB/spool pieces $\Delta x < 0.3$ mm with $\delta_{r.m.s} = 0.15$ mm
- Alignment of the object in the tunnel at the same level of precision not discussed here , see J.P.
 Quesnel this afternoon.

Align the imperfect object

Criteria and method

- It was shown that the axis which minimises forbidden n-poles (expected $b_n = 0$) coincides with best fit of cold bore center within 0.1mm residual (W.Scandale et al.)
- Then fully rely on geometry
- Perform full 3D image of both tubes & ends (J.P. Quesnel, M. Mayoud, D. Missiaen)
- Algorithm of minimisation by D. Missiaen, see Thursday
- Same procedure in industry for cold mass and at CERN for cold mass + cryostat

(M. Bajko et al., see Thursday E. Wildner)

Results so far : 3D Laser-tracker data for > 100 MB

- This one a bit better than average, but not a rare case
- We get more 'golden' MB's than stricktly needed
- → Helps much to play with not so easy magnetic sorting Alignment in LHC, IWAA 04, BJ

Survey and geometry of MB

- 3D internal MB data proved to be essential
 - We can fit the geometry well inside strict tolerances
 - It allowed to find a nasty mechanical instability, which deformed the magnet during cold testing
- Now the assembly is
 - Precise enough (aperture and magnetic)
 - Stable
 - Elastic
- (MQ : adequate magnetic data need be obtained together with 3D geometry survey , see L. Bottura Thursday)

Conclusions

- Past machine (CERN at least)
 - Survey team was to install a 'rigid and perfect object' on a theoretical central orbit in a 3D absolute frame. More was not always really welcome
- LHC
 - Every cold assembly deserves precise internal 3D geometry data
 - Survey participation was essential in the design phase (not always adequately admitted)
 - LHC performance depends on a close interplay between hardware design, beam physics+operation and survey. This is new and will be true for any future big machines
 - It seems to be in a good way for LHC in that respect
 - but still more than two years of work in front of us