Alignment in Circular Colliders and Specific Requirements for LHC

J-B. Jeanneret CERN AB/ABP

IWAA 2004, CERN October 2004

Outline

- Closed orbit and tolerances
- Magnetic issues at LHC
- Aperture issues
\rightarrow Survey issues
- Conclusions

Closed orbit and tolerances

An issue for all machines : Closed Orbit errors

Mad model and correction algorithm,
J. Wenninger

Residual after correction

- Usual case : no H-kicker at QD
\rightarrow Non-local correction:
Perturbation not eliminated, and expanding over $\sim 7 \mathrm{MQ}$
- r.m.s $\Delta x=1 \mathrm{~mm}$ over all MQ's and BPM's :
$\rightarrow \Sigma_{\text {rms }} \Delta \mathrm{x}=1.5 \mathrm{~mm}$
- This without BPM resolution, missing BPM's, local coherent distortions, numeric matrix inversion errors ...
- $\Delta_{\mathrm{MQ}}<1.5 \mathrm{~mm}, \Delta_{\mathrm{BPM}}<0.5 \mathrm{~mm}$ (tol, total)

Mad model and correction algorithm, J. Wenninger

Experimental insertions

- High luminosity at LHC \rightarrow beam size at crossing $\sigma=17 \mu \mathrm{~m}$
- $\beta_{\mathrm{MQX}}=5000 \mathrm{~m}$ compared to $\beta_{\mathrm{arc}}=200 \mathrm{~m}$
- Beam divergence $\sigma_{\text {MQX }}^{\prime}=\sigma_{\text {arc }} / 5$
- 2 opposite protons beams in the same tube : dipoles cannot do the job there
\rightarrow CO corrections must be made $\sim 2-300 \mathrm{~m}$ away
- Very critical, need MQX perfectly aligned with frequent remote checks and re-alignmnet
- See A. Herty et al. Tuesday

Magnetic issues

LHC basic parameters - I

- Goal : Allow to discover a H-boson up to $\mathrm{m}_{\mathrm{H}}=400 \mathrm{GeV}$ (and more)
\rightarrow Proton-proton Collisions at $\sim 10 \mathrm{TeV}+10 \mathrm{TeV}$
\rightarrow Luminosity $\mathrm{L}=10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ so : high stored current
- Fit in the LEP tunnel with arc curvature $\rho=3606 \mathrm{~m}$

With a filling factor of 0.8 (need focussing, correctors, etc) :
$\Rightarrow \quad \rho_{\mathrm{mb}}=0.8 \rho=2800 \mathrm{~m}$ and $\mathrm{B}=\frac{\mathrm{E}}{0.3 \rho_{\mathrm{mb}}}=\frac{10^{4} \mathrm{GeV}}{0.3 \times 2800}=12 \mathrm{~T}$

- Classical 'warm' magnets : B < 2T
\rightarrow Need superconductor magnets

LHC basic parameters - II

- Best candidates NbTi , with in practice $\mathrm{B}_{\text {best }} \cong 9 \mathrm{~T}$
- This even with superfliud helium ($\mathrm{Tc}=2.8 \mathrm{~K}$ at $\mathrm{B}=9 \mathrm{~T}$)
\rightarrow Beam Energy in collision : $\quad \mathrm{E}_{\text {coll }} \cong 7 \mathrm{TeV}$
- Finally: use existing injector : $\mathrm{E}_{\mathrm{inj}}=0.45 \mathrm{TeV}$
\rightarrow Fixes the r.m.s beam size $\sigma=1.2 \mathrm{~mm}$
\rightarrow And the vacuum chamber size, see below

A super-conducting dipole field - basic theory

$$
\begin{aligned}
& \int_{\text {border }} \vec{B} d \vec{s}=\iint_{\text {inside }} i d S \Rightarrow B(r)=\frac{\mu_{0} i}{2} r \\
& \rightarrow \quad \vec{B}=\frac{\mu_{0} i}{2}(\vec{k} \wedge \vec{r})
\end{aligned}
$$

$$
\vec{B}_{1}+\vec{B}_{2}=\frac{\mu_{0} i}{2}[\vec{k} \wedge(\vec{r}+\epsilon \vec{i})-\vec{k} \wedge(\vec{r}-\epsilon \vec{i})]=\mu_{0} i \epsilon[\vec{k} \wedge \vec{i}]=\mu_{0} i \epsilon \vec{j}
$$

\rightarrow A skin of current varying with $\cos \phi$ produces a uniform dipole field

$$
\text { But : to be perfect, } \epsilon \rightarrow 0, i \rightarrow \text { infinity }
$$

The coils

- $\epsilon \cong 1$, not exactly $\epsilon \rightarrow 0$
- Cosine function not very close to textbook definition
- In spite of clever corrections, field map is not constant enough
\rightarrow Need corrective elements
- $\mathrm{B}=9 \mathrm{~T} \rightarrow \mathrm{NI}=1 \mathrm{MA}$
\rightarrow EM forces $\sim 2 \mathrm{MN} / \mathrm{m}$
\rightarrow High mechanical stiffness

A super-conducting dipole field - in practice

2 beam lines with opposite polarity

- Economical
- Twist control

Length $\mathrm{L}=15 \mathrm{~m}$
Weight $\mathrm{m}=27$ tons
Working point $\mathrm{T}=2 \mathrm{~K}$ (superfluid helium)
\rightarrow Embedded in a cryostat

\rightarrow CM hidden to Survey

Courtesy of F. Savary AT-MAS and F. Seyvet AT-CRI Alignment in LHC, IWAA 04, BJ

Magnetic correction strategy

- Field map modify the tune, the chromaticity , etc
- They can reduce the dynamic aperture (beam lifetime, losses)
- Corrections are needed
- Multipole coils running inside the main coils:
- Strong dB/dt of main field \rightarrow strong inductive and persistant errors s.c. (non-resistive) in correcting coils (HERA)
- Rather: Autonomous correctors at the extremities
- No inductive errors
- But alignment issues
\rightarrow Transmutation of Magnetic problems into Survey issues! (see below)

Field map errors expressed as multipole expansion in unit 10^{-4} with latest coil-shape

N-pole Ap1 inj/top Ap1 inj/top

b2	~ 1.3	~-1.1
b3	$\sim-4.5 / 3$	$\sim-4.5 / 3$
b4	$\sim 0 / 0.2$	$\sim 0 / 0.2$
b5	$\sim+1.0 / 0$	$\sim+1.0 / 0$
b6	~ 0	~ 0
b7	$\sim+0.3 /+0.7$	$\sim+0.3 /+0.7$
b8	~ 0	~ 0
b9	~ 0.8	~ 0.8
a2	~-0.4	~-0.4
a3	~-0.26	~-0.23
a4	$\sim+-0.13$	$\sim+-0.13$
a5	$\sim+0.03$	$\sim+0.02$
a6	~ 0	~ 0
a7	$\sim+0.04$	$\sim+0.04$
a8	~ 0	~ 0
a9	~ 0	Aligmn@ent in

$$
B_{y}+i B_{x}=B_{1} \sum_{n}\left(b_{n}+i a_{n}\right)\left(\frac{z}{17 \mathrm{~mm}}\right)^{n-1}
$$

Consider b_{5}, then misalign spool by δ along y :

$$
\begin{aligned}
&(y+\delta)^{4}-x^{4}=\ldots=4 y^{3} \delta+6 y 2 \delta^{3}+\ldots \\
& \Longrightarrow \quad a_{4}^{\mathrm{fd}}=\frac{4 \delta}{R_{r}} b_{5}
\end{aligned}
$$

The critical displacement $\delta_{\text {cr }}$ for $\mathrm{a}_{4}{ }^{\mathrm{fd}}<\mathrm{a}_{4} / 2$ is :

$$
\delta_{\mathrm{cr}}<\frac{a_{4}^{\mathrm{fd}}}{2 b_{5}} \frac{R_{r}}{4}=0.3 \mathrm{~mm}
$$

!! Much simplified, see S. Fartoukh LCC 2001-11 \& FQWG March 2003 !!

Beam based specification for spool piece

Beam Spec.	$\Delta \mathrm{x}, \Delta \mathrm{z}$	$\sigma(\mathrm{x}), \sigma(\mathrm{y})$ w.r.t. tunnel	$\sigma(\mathrm{x}), \sigma(\mathrm{y})$ w.r.t. cold mass *	$\sigma(\theta)$ w.r.t. tunnel $* *$
Unit	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$[\mathrm{mm}]$	$[\mathrm{mrad}]$
MCS	0.3	0.5	0.15	1.5
MCDO	0.3	0.5	0.15	2

*i.e. Magn. Axis w.r.t. cold mass mechanical mid-plane at ITP20
** Not different from $\sigma(\theta)$ w.r.t. cold mid-plane
Source : S.Fartoukh , LCC 2001-11 and FQWG 4th March 2003

Aperture issues

Beam Aperture - I

- Initially : cold bore with radius $\mathrm{R}=25 \mathrm{~mm}$ (this after all the rest was fixed)
- Short bunch separation (25ns) and large population (1.1×10 ${ }^{11} \mathrm{p}$): - Multipacting + e-cloud \rightarrow Need of a beam screen
- Ions finally trapped on the 2K cold bore
- But 3mm lost for aperture
- So please, Survey ...

Courtesy of N. Kos AT-VAC

Beam Aperture - II

- High beam intensity $\mathrm{N}=3000 \times 10^{11} \mathrm{p}$
- With $\tau_{\text {beam }}=20 \mathrm{~h}, \mathrm{dN} / \mathrm{dt}_{\text {loss }}=4 \times 10^{9} \mathrm{p} / \mathrm{s}$
- Quench with $\mathrm{dN} / \mathrm{dt}_{\text {quench }}=10^{7} \mathrm{p} / \mathrm{s} / \mathrm{m}$
- With a margin factor $m=100$, need a collimation system with a capture efficiency $\sim 10^{4}$ (effective cascade absorbtion length $\sim 1 \mathrm{~m}$)
- 2-stage collimation OK, but need pipe away by 4σ from collimator aperture

Beam Aperture - III

- $\mathrm{n}_{1} \sigma+\delta \sigma=1.1(6+4) \sigma=13 \mathrm{~mm}$
- $\mathrm{a}=\mathrm{CO}+\mathrm{t}+\mathrm{Ddp}=9 \mathrm{~mm}$
- Remains $\mathrm{t} \cong 2.5 \mathrm{~mm}$
- Let skip the bargains about splitting t between Cold mass, Assembly, Survey

What remains for the finished cold mass \rightarrow
silver (blue line) and a few golden ones

Survey issues

What is needed

1) An object with its inner shape controlled down to $\Delta \mathrm{x} \times \Delta \mathrm{z} \cong 1.5 \times 0.7 \mathrm{~mm}^{2}$ over 15 m inside its cryostat
2) Relative axis error MB/spool pieces $\Delta x<0.3$ mm with $\delta_{\text {r.m.s }}=0.15 \mathrm{~mm}$
3) Alignment of the object in the tunnel at the same level of precision - not discussed here , see J.P. Quesnel this afternoon.

Align the imperfect object

With which criteria?

- Fit to theoritical curve, averaging two beam tubes for best aperture
 spool w.r.t. body?

V-plane

Criteria and method

- It was shown that the axis which minimises forbidden n-poles (expected $b_{n}=0$) coincides with best fit of cold bore center within 0.1 mm residual (W.Scandale et al.)
- Then fully rely on geometry
- Perform full 3D image of both tubes \& ends
(J.P. Quesnel, M. Mayoud, D. Missiaen)
- Algorithm of minimisation by D. Missiaen, see Thursday
- Same procedure in industry for cold mass and at CERN for cold mass + cryostat
(M. Bajko et al., see Thursday E. Wildner)

Results so far : 3D Laser-tracker data for > 100 MB

\leftarrow Data from industry
M. Bajko et al.

\leftarrow Data from CERN after cold test, D. Missiaen

Data retrieved from
MTF and MAS dBase

- This one a bit better than average, but not a rare case
- We get more 'golden’ MB’s than stricktly needed
\rightarrow Helps much to play with not so easy magnetic sorting Alignment in LHC, IWAA 04, BJ

Survey and geometry of MB

- 3D internal MB data proved to be essential
- We can fit the geometry well inside strict tolerances
- It allowed to find a nasty mechanical instability, which deformed the magnet during cold testing
- Now the assembly is
- Precise enough (aperture and magnetic)
- Stable
- Elastic
- (MQ : adequate magnetic data need be obtained together with 3D geometry survey , see L. Bottura Thursday)

Conclusions

- Past machine (CERN at least)
- Survey team was to install a 'rigid and perfect object' on a theoretical central orbit in a 3D absolute frame. More was not always really welcome
- LHC
- Every cold assembly deserves precise internal 3D geometry data
- Survey participation was essential in the design phase (not always adequately admitted)
- LHC performance depends on a close interplay between hardware design, beam physics+operation and survey. This is new and will be true for any future big machines
- It seems to be in a good way for LHC in that respect
- but still more than two years of work in front of us

