Alignment issues in large experiments: The CMS system.

8th International Workshop on Accelerator Alignment
4-7 October 2004
CERN, Switzerland

• Physics motivation
• General considerations about alignment
• The CMS alignment

T. Rodrigo¹, F. Matorras¹, A. Calderón¹ and G. Bencze²

1. Instituto de Física de Cantabria (CSIC-UC), Spain
2. KFKI Research Institute for Particle and Nuclear Physics, Hungary
Why ... ?
Physics Motivation

• Precise measurement of SM and searches of new physics
 – In LHC major interest in Higgs search
 – Often look for tiny signals on top of large background

• Imply the precise reconstruction of “objects”
 – Tracks
 • muons, hadrons, electrons
 – Calorimetric showers
 • Photons, neutral hadrons
 – Jets
 – Secondary vertices
 • displaced tracks

A/H → µµ in bbH_{susy} production
full simulation, ORCA reconstruction

$$\begin{align*}
\text{Chi}^2 / \text{ndf} & = 29.99 / 55 \\
p_0 & = 51.23 \pm 0.4931 \\
p_1 & = 130.4 \pm 0.5181 \\
p_2 & = 2.831 \pm 0.1013 \\
p_3 & = 10.45 \pm 0.000784 \\
p_4 & = -0.04193 \pm 0.000784
\end{align*}$$
Why we need to align?

• To achieve these **physics goals**
 ⇒ detectors consist of a large number of precise and complex sub-units (each of these itself contains many detecting elements)

• **Mispositioning** of any of these elements
 ⇒ results in bad reconstruction of the particles: wrong properties of the particle or even particles might be undetected

• Problem more acute in **large muon systems**: performance implies alignment accuracies on the order of the detector resolution (tens of microns) between detectors placed in mechanical structures separated more than 10 meters

• Settling, thermal shift, gravitational force and stresses coupled from the magnet system generally **deform the support structures** (up to a few cm for muon systems)
Different alignment situations

- In many experiments precise alignment needed for two different cases:

- Precise positioning of Silicon vertex detectors & other tracking devices
 - intrinsic precisions on the range of 10-100 µm
 - alignment errors propagate to the track reconstruction:
 - efficiency loss, degradation of momentum, mass...
 - often critical for vertex/impact parameter:
 - basic in many analyses involving τ or b quark (Higgs search!)
 - problem present at LEP, Tevatron, LHC...

- Alignment of muon spectrometers and w.r.t central tracking system
 - some experiments use the muon system to improve muon reconstruction
 - typical precision of ~ 100 µm
 - L3, CMS, ATLAS
 - for optimal performance of the whole system relative position of muon chambers and central tracker need (sub mm)
 - scale of several meters
Misalignment effect on trigger (CMS)

- Trigger performance is significantly degraded when alignment/positioning errors are included (on-line selection)
- Some examples at Level2 (muon system trigger)

A. Calderón. IWAA 2004
An example from off-line analysis

- Z’ boson search (CMS, S.Valuev, B.Coussins, J.Mumford)
- effect of weight deformation in the analysis

Ideal alignment

expected errors after survey

3 TeV Z_{SSM}

\[\sigma_{mass} = 5.3\% \]

\[\mu\mu \, mass \]

\[\sigma_{mass} = 6.9\% \]

- mass resolution starts to degrade for survey precisions
 - discovery/exclusion potential degraded
How ...?
Factorize the alignment task into:

- **Local or internal alignment**: Of individual subdetectors, so they may be considered as rigid bodies or blocks (6 degrees of freedom) / Position of individuals elements within a detector. (Vertex detector)
- **Global alignment**: spatial relation of these blocks to each other / Position of the various detectors with respect to each other. (Muon spectrometer w.r.t. tracker).
- The position of the experiment with **respect to the beam**

Ref.: M. J. Price, “Alignment of experiments”
CAS-CERN Accelerator School: Measurement and Alignment of Accelerator and Detector Magnets.
Apr. 1997, Anacapri, Italy.
1) Design, construction and assembly:

- Once per year ...
- Evaluating mechanical designs (stability, rigidity), fiducialization, metrology

2) Surveys in situ

- ‘Continuous’?

3) Monitoring information

- Signal

4) Alignment with tracks

- Very slow process
- Precise results for some coordinates and for stable displacements

Final Geometry

Reconstruction (off-line)

Trigger (on-line)

Corrected geometry by monitoring

Based on V. Karimäki, Software Alignment of the CMS Tracker Workshop on B/Tau Physics at the LHC, Helsinki, 2002.
Several techniques:

- **Distance monitors:**
 - **FSI:** precision 1μm, range tens cm - 1 m (ATLAS inner tracker)

 Ref. : A.F. Fox-Murphy et al., NIM A383, 229(1996)

 - **Lasers proximity sensors**
 - Triangulation (L3 muon chambers)
 - Intensity

 - **Electrical proximity sensors:** precision ~ 10 μm (range 50 mm) (L3, CMS)
 - Capacitives
 - Potentiometers

- **Colinearity monitors:**
 - **RASNIK:** precision ~ 3 μm (range 5m) (L3, ATLAS, CHORUS, CDF)

 - **Semitransparent a-Si:H sensors:** (CMS)

 - **STAMP** (ATLAS), **COPS** (CMS)

- **Angular measurements:**
 - **Inclinometers** (CMS)

To be presented in the CMS Link system
FSI (Frequency Scanning Interferometry)

- **FSI** is a precise technique for multiple simultaneous absolute length measurements.

Basic principle:
- A common **tunable laser** system is used for the **interferometers to be measured** and also for the **reference interferometer** (thermally stabilized).
- The optical **frequency** is simultaneous **scanned** in all interferometers.

- Each length is measured by **comparing** the **phase change** in each measured interferometer with the phase change in the reference interferometer.
- The ratio of phase change gives the ratio of lengths.
- Typical **precision 1 micron**

Ref. : P. A. Coe et al
“Frequency Scanning Interferometry in detail”, IWAA 2002
“S. M. Gibson et al” Multiple, simultaneous length measurements” IWAA 2002
A. Mitra et al “Combination of FSI with other novel optical tools”, IWAA 2002
CCD-RASNIK

- 3-point colinearity monitor.
- Each elements close to the measurement points.
- Range limited by the mask size

- **Precision Image**: provides (X,Y) point positions from Black-White transitions (in the CCD)
- **Z Coordinate** provided from Image Scale Factor
- **Rotations Z** coordinate provided from image tilt.

Transverse resolution \(\sim 1 \, \mu m \) (at 5m)
Longitudinal resolution \(\sim 30 \, \mu m \)
An example ...

The Compact Muon Solenoid Alignment
Design Criteria

- Very good lepton ID (e, \(\mu \))
- And tracking system (\(B=4T \)) to measure the particle \(p \)
- Detectors capable to operate with high radiation levels (up to 1MGy in 10 years)
- Fast response technologies (beam crossing time 25 ns)
- Good detector hermeticity

Weight: 12.500 t
Diameter: 15.0 m
Length: 21.6 m
B Field: 4 T
Muon spectrometer: Geometry

- Muon chambers are sandwiched in the return yoke.

Muon Barrel
- 5 wheels/ four layers each
- 250 chambers

Muon Endcap
- 6000 m² sensitive area (all planes)
- 540 chambers

Barrel support structure
(~12 m × 15 m)

Wheel: three concentric iron layers.

Mechanical structures:
- Large dimensions and not rigid enough for the requirements.

A precision Alignment!

A. Calderón. IWAA 2004
Alignment System: Requirements

- Maximum expected motions:
 - ~1-3 cm B on/off
 - < 500 µm operation (Temp. and humidity)

- Maximum allowed misalignment (not degrade P measurement)
 - $\sigma_{R\Phi} = 200$ µm, Barrel
 - $\sigma_{R\Phi} = 200$ µm, Endcap

 At level of mm in R, Z

- Radiation resistant and non-magnetic materials.
Alignment System

Aim
Tracker internal alignment, monitor the muon chambers relative positions (barrel and endcap) and with respect to the tracker.

Structured in 4 subsystems

- Internal Muon Barrel Alignment
- Internal Muon Endcap Alignment
- The Link System
- Internal Tracker Alignment
Internal Tracker Alignment

Combined

- hardware alignment (precision ~ 100 µm)
- alignment with tracks (improve precision up to ~ 10 µm)

- Internal alignment endcap dics (50 % petals, rest using track overlap). σ better than 100 µm
- Relative alignment Endcap-Barrel: 8 optical connections, σ ~ 100 µm

TKAL uses Si-modules as alignment sensors and Tracks to achieve 10 µm align. accuracy

A. Calderón. IWAA 2004
Internal Barrel Alignment

Position between muon chambers through a mechanical reference structure—so-called MABs (Module for Alignment of Barrel)

- Mechanical structure MAB
 - Length about 4m
 - Good Rigidity (50 µm/50 µrad)

- 6 active planes RZ, 6 passive planes

- Light sources in muon chambers are detected by the MABs.
- Relative position between cameras using triangulation techniques.

- Photogrammetry techniques
 - Measurements
 - Wires → External reference points
 - Light sources
 - 50 µm
 - 60 µm R_{ϕ}
 - 300 µm Z

- Overall Precision $\sigma \sim 200$ µm

A. Calderón. IWAA 2004
Internal Endcap Alignment

- Measure and monitor Cathode Strip Chambers (CSCs) (Muon chambers) positions in each endcap and also the connection between endcaps.

3 SLM laser lines: CSCs position inside each station.

(φ, R) transfer via 6 Transfer Line at maximum R through MABs and several muon chambers.

Multipoint alignment system

Components:
- Laser 670 nm
- CCDs square geometry
- Displacement sensors:
 - optical
 - potentiometers

Precision ~ 200 μm
The LINK System

Global alignment of CMS, transports central tracker coordinate system to Muon chambers defining a common system.

Sensors: type & technology
- Photo-sensors
- Inclinometers
- Displacement sensors
- Temperature sensors

Optics (definition of the light path)
- Beam splitters
- Prisms: Rhomboid prisms and pentaprisms.

Mechanical components.
- CF supporting structures (MABs, Link wheel, bars)

Front-End & DAQ electronics

Most are commercial after an extensive and often non-trivial checks of performance characterization (also in the adverse environment: magnetic field and radiation)

A. Calderón. IWAA 2004
LINK System: environment

Magnetic Field
- 4 Teslas
- Gradients up to 600 Gauss/cm
- Complex field map

Radiation environment
- Hard radiation environment
- Photons, neutrons, charged hadrons
- Dose: 1 - 100 x 10^3 Gy (10 years)
- Fluence 5 x 10^{10} - 2 x 10^{14} n/cm^2 (10 years)

Accumulative
- Electronics
- Semiconductors
- Photonic elements
- Optics

No accumulative
- Crystal Lattice defects

Single Events
- Electronics
- Semiconductors
Laser system (I)

1. Diode Lasers (Out of CMS)

2. Single-mode optical fibers (distribute the laser light inside the detector)

3. Fiber Collimators (inside CMS) (generate a gussian beam at every measuring point of the light path)

b) Radiation-induced absorption (RIA)

\(\gamma \) and \(n \) irradiation \(\Rightarrow \) Formation (or activation) of ‘colour centers’, which absorb light at particular wavelengths. One order of magnitude higher in visible range than in infrared. At Tracker < 1dB/m up to 100 kGy dose and \(2 \times 10^{14} \text{n/cm}^2 \) in 10 years. (1dB: 80%)

Complete characterization: active measurements under gamma and neutron irradiation.

A. Calderón. IWAA 2004
Photosensors

Amorphous silicon on a glass substrate

Specifications:
- a-Si:H sensor (DPSD)
- Active area: 30×30 mm2
- Strip number: 64×64, 430 μm pitch
- Substrate thickness: 0.5-1 mm
- Radiation resistant

Multipoint Measurement: Semitransparent Sensors Array

Two studies

Silicon on a ceramic substrate

Commercial option

Specifications:
- 2D CMOS image sensor
- High active area (24.6×49.2 mm2)
- Pixel matrix: 512×1024, 48 μm pitch
- Radiation resistant

Developed: optomechanics + electronics

Non-transparent sensors

A. Calderón. IWAA 2004
Almy sensors (I)

Signal reconstruction

Position of a light spot: center of gravity of the photocharge distribution collected by the 2D grid of photodiodes.

Example of a He-Ne laser spot: photocharge distributions in X and Y directions.

Spatial position reconstruction: linearity test

Linearity and resolution

Compare real displacements with reconstructed displacements from the sensor signal.

Linearity \Rightarrow resolution $\leq 5 \mu m$
Almy sensors (II)

Intrinsic position reconstruction

Distribution of the reconstructed position of the light spot on sensor A2 during a short term stability run.

\[\sigma_x, \sigma_y < 3 \, \mu m \]

Deflections

Laser beam deflects crossing different sensor layers.

Measurement of the optical uniformity of the multilayer sensor.

Deflection angles measured

\[\langle \theta_x \rangle, \langle \theta_y \rangle < 3 \, \mu rad \]

\[\sigma(\theta_x), \sigma(\theta_y) < 5 \, \mu rad \]

Transmittance

Transmittance vs. Wavelength (nm)

超过70% for visible and NIR

Ref. M. Fernandez, Transparent detector for the AMS alignment system, IWAA 99

A. Calderón. IWAA 2004
Displacement sensors

System requirements:
- Working range: ~ 2.5 - 5 cm (depends on the CMS region)
- Measurement precision: ~ 80 µm
- Radiation and B tolerance

Non-contact sensors: laser triangulation sensor

OMRON Z4M-W100

Range: ± 40 mm
Linearity: 1.5%

Characterization test:
- Stability (600 min): ± 3 µm
- Linearity => linearity residuals < 25 µm
- Irradiation test:
 Changes < 1 % up to 3 Gy & 10^{11} n/cm²
- B test: ~ 30-50 µm

Contact sensors: Linear Potentiometer sensors

SLS130/2K/L/50/1 (Penny Giles)
HLP129/BC1/50/2K/RR (Penny Giles)
s13flp50A (SAKAЕ)
s18flpa50K (SAKAЕ)

Range: ± 50 mm
Linearity: between 0.1 and 1 %

Characterization test:
- Stability (12 h): changes ~ 0.1 mV
- Linearity ~ 50 µm
- Irradiation test: Negligible changes < 0.1 %
 up to 50 kGy & 10^{14} n/cm²
- B test: no effects up to 2T and 0.186 T/cm

A. Calderón. IWAA 2004
Measuring the ϕ angle

Measure angular position and rotational movement of the elements to which they are attached respect to the most stable reference: the vertical gravity vector.

Electrolytic sensor

- An enclosed bubble, suspended in a liquid, will always orient itself perpendicular to the gravity.

Model AGI 756

Range: $\pm 10^\circ$

Linearity: 2 %

Characterization test:

- **Stability:** settling time (24-48 h after installation) < 3 μrad in ~ 133 h.
- **Linearity:** residuals < 20 μrad
- **Irradiation:** γ up to 50 kGy + 2 x 10^{14} n/cm2
 \Rightarrow No changes
- **B test:** sensitive to field gradients (< 40 μrad, located in uniform B)
Real scale test

• Real scale version of a half of a CMS R-Z alignment plane.
• Relevant elements for the position monitoring:
 - track zone
 - ½ active plane of Barrel system
 - 2 endcaps lines + connection between them.
 - Link lines
• Estimation the system performance and measurement accuracy.

Absolute reconstruction of the measured positions for the Link system shown a precision $\sim 200 \, \mu m$

Summary and next steps

- CMS has designed a complex alignment system
 - different component types were selected/developed fulfilling:
 - precision requirements
 - good operation in CMS environment (radiation, field, temperature…)
 - full scale test confirm required precisions
 - \(\sim 100-200 \ \mu \text{m} \) and \(15-40 \ \mu \text{rad} \) in the relevant coordinates

- all components in production
- final calibration next year
- installation and commissioning in 2005 during CMS magnet test
Factorize the alignment task into:

- **Local or internal alignment**: Of individual subdetectors, so they may be considered as rigid bodies or blocks (6 degrees of freedom) / Position of individuals elements within a detector. (Vertex detector)

- **Global alignment**: spatial relation of these blocks to each other / Position of the various detectors with respect to each other. (Muon spectrometer w.r.t. tracker).

- The position of the experiment with **respect to the beam**

Phases of the alignment:

- At the **design** and **construction** of individual modules: assuring that the the components are located properly.
- During **pre-assembly** and **assembly** of modules in the detector: providing geometrical information on the difference between “as built” and “the theoretical or nominal” with a good accuracy.
- **After installation** of the detector onto the **underground area**.
- Periodically **during running** of the detector

Ref.: M. J. Price, “Alignment of experiments”
CAS-CERN Accelerator School: Measurement and Alignment of Accelerator and Detector Magnets.
Apr. 1997, Anacapri, Italy.
FSI (Frequency Scanning Interferometry)

- FSI is a precise technique for multiple simultaneous absolute length measurements.

Basic principle:
- A common tunable laser system is used for the interferometers to be measured and also for the reference interferometer (thermally stabilized).
- The optical frequency is simultaneous scanned in all interferometers.

- Each length is measured by comparing the phase change in each measured interferometer with the phase change in the reference interferometer.
- The ratio of phase change gives the ratio of lengths.
- Typical **precision 1 micron**

Ref. : P. A. Coe et al
“Frequency Scanning Interferometry in detail”, IWAA 2002
“S. M. Gibson et al” Multiple, simultaneous length measurements” IWAA 2002
A. Mitra et al “Combination of FSI with other novel optical tools”, IWAA 2002
• 3-point colinearity monitor.
• Each element close to the measurement points.
• Range limited by the mask size

- **Precision Image**: provides (X,Y) point positions from Black-White transitions (in the CCD)
- **Z Coordinate** provided from Image Scale Factor
- **Rotations Z** coordinate provided from image tilt.

Transverse resolution ~ 1 µm (at 5m)
Longitudinal resolution ~ 30 µm

CCD-RASNIK technique is used in the alignment of ATLAS muon chambers.

A. Calderón. IWAA 2004
4) Alignment with tracks

- Historically the run-time alignment of particle detectors used the detected tracks to relate the position of the detector elements
 - track extrapolation is compared with actual hits in sub-detectors
 - multi-parameter fit to the different degrees of freedom
- However, in many cases this is a very slow process, sometimes implies recording large amount of data
 - cannot usually monitor displacements occurring in short time
- Subject to possible biases due to magnetic field or material description.
- All in all, for some coordinates and for stable displacements, it can provide precise results

Combining of Monitoring information + Alignment by tracks → Final geometry
LINK System: geometry

Global alignment of CMS, transports central tracker coordinate system to Muon chambers defining a common system.

Multipoint alignment system (Straightness monitor)

- 3 Φ linking planes (active planes)

- Basic units 1/4 plane, connecting (by laser beams) tracker y muons

- Layout follow the CMS subdetectors geometry.

A. Calderón. IWAA 2004
LINK System: components

Laser system
- laser diodes (at 690 nm)
- Optical fibres & collimators

Sensors: type & technology
- Photo-sensors
- Inclinometers
- Displacement sensors
- Temperature sensors

Optics (definition of the light path)
- Beam splitters
- Prisms: Rhomboid prisms and pentaprisms.

Mechanical components.
- CF supporting structures (MABs, Link wheel, bars)

Front-End & DAQ electronics

Most are commercial after an extensive and often non-trivial checks of performance characterization (also in the adverse environment: magnetic field and radiation)
LINK System: environment

Magnetic Field
- 4 Teslas
- Gradients up to 600 Gauss/cm
- Complex field map

Radiation environment
- Hard radiation environment
- Photons, neutrons, charged hadrons
- Dose: $1 - 100 \times 10^3$ Gy (10 years)
- Fluence $5 \times 10^{10} - 2 \times 10^{14}$ n/cm2 (10 years)

Accumulative
- TDI
- Electronics Semiconductors
- Photonic elements
- Optics

No accumulative
- Single Events
- Displacement
- Crystal Lattice defects
- Electronics Semiconductors
1. Diode Lasers (Out of CMS)

Several commercial samples from two manufactures:
- MONOCROM
- Schäfter+Kirchhoff

at different wavelengths were tested.

- Total lasers: 18
- Wavelength driven by the sensitivity of the photosensors:
 Working wavelength 690nm
- Output optical power 30 mWatt.
 (due to losses in optical fibers and optics)
- Power modulation
- Optical power stability better than 1%

3. Fiber Collimators (inside CMS)

- Commercial
- Gaussian spot w/o distortion along the working path (2 to 10 m)
- Hard-rad and non-magnetic materials
 (Titanium, fused silica lens)
Laser system (II)

2. Single-mode optical fibers (distribute the laser light inside the detector)

- Single mode optical fiber cables at working wavelength (690nm). Gaussian beam at the output of the fiber.
- FC/PC connections.

<table>
<thead>
<tr>
<th>Fibre</th>
<th>Reference</th>
<th>Diameter (µm)</th>
<th>M.F.D. (µm)</th>
<th>Cut-Off Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3M – I</td>
<td>FS-SN-3224</td>
<td>125/250</td>
<td>4.0</td>
<td>620</td>
</tr>
<tr>
<td>3M – II</td>
<td>FS-SC-5624</td>
<td>125/250</td>
<td>6.6</td>
<td>950</td>
</tr>
<tr>
<td>Corning</td>
<td>HI 1060</td>
<td>125/245</td>
<td>6.2</td>
<td>920</td>
</tr>
<tr>
<td>OFS</td>
<td>CF04247-02</td>
<td>125/245</td>
<td>4.3</td>
<td>620</td>
</tr>
<tr>
<td>Nufern</td>
<td>S630</td>
<td>125/245</td>
<td>4.2</td>
<td>570</td>
</tr>
</tbody>
</table>

- Radiation tolerance
 a) Rad-hard materials: Pure Silica Core Silica cladding Acrylate Coating (OK CERN safety test)
 b) Radiation induced absorption (RIA)

γ and n irradiation ⇒ Formation (or activation) of ‘colour centers’, which absorb light at particular wavelengths. One order of magnitude higher in visible range than in infrared. At Tracker < 1dB/m up to 100 kGy dose and 2 × 10¹⁴ n/cm² in 10 years. (1dB : 80%)

Complete characterization: active measurements under gamma and neutron irradiation.

A. Calderón. IWAA 2004