

NEW DEVELOPMENTS IN CLOSE RANGE PHOTOGRAMMETRY APPLIED TO LARGE PHYSIKS DETECTORS

Antje Behrens
Christian Lasseur
Dirk Mergelkuhl

Content

- Photogrammetric system
- Project: CMS Yoke End Cap
- Movement of principle point
- Extended calibration model
- Conclusions

Photogrammetric System

- DCS460 and DCS660 cameras
- AICON software packages DPA-Win and 3D Studio
- Retro-reflective targets
- Carbon fibre scale bars

CMS - Yoke End Cap

6 Yoke End Caps

$\rightarrow 12$ photogrammetric validations in Japan after preassembly

- Image acquisition: Japan, Evaluation: CERN
- Diameter: 14 m
- Thickness: 0.6 m or 0.25 m

Photogrammetric Project

- 108 Reference holes equipped
- Spherical targets for connection
- 24 Distance observations
- 12 Carbon fibre scale bars, length 1.4 m
- 12 Tape measurements, length 5 m-14 m
- 90 Images
- 3 hours

Decreasing Quality

Problem: Decreasing quality with conventional calibration model

Possible reason: Instability of interior orientation

- Mechanical influences by the user
- Hand-held shots
- Scaffolding, lifting device
- Effects of gravity
- Heating of the camera

Movement of Principle Point

Test: Evaluation of movements of the principle point

- Circular object
- Diameter: 2 m
- Depth: 0.5 m
- Camera in front of wheel
- Rotated by 15 degrees around optical axis
$\rightarrow 24$ Images

Results

- Principle point not stable
- Movement elliptical
- Amplitude
- $40 \mu \mathrm{~m}$ in x -direction
- $50 \mu \mathrm{~m}$ in y -direction
\rightarrow Effects of gravity
- Deformation camera body
- Movement of CCD sensor

First Conclusions

Possible solution: calculate principle distance / principle point for each image

BUT for real objects:

- Lack of depth
- Unfavourable distribution of points
- Insufficient number of points
\rightarrow Weak equation system

\rightarrow I mproved mathematical model for camera calibration required

Extended Calibration Model

- Conventional calibration model extended by Institute of Applied Photogrammetry, University of Oldenburg (Germany)
- AlCON 3D Systems GmbH, Braunschweig (Germany)
- CERN

Image-Variant Interior Orientation

I mage-variant interior orientation

- Parameters introduced as observed unknowns
- A priori accuracy defined by user
\rightarrow No weak equation system
\rightarrow Smearing effects caused by correlations minimized

Radial-symmetric distortion A1, A2, A3

Finite Elements Correction Grid

Finite elements correction grid

- Correction of
- Tangential-asymmetric distortion
- Affinity and shearing
- Sensor unflatness
- Raster-wise correction grid
- Correction as plane vector for each grid point
- Curvature constraints as pseudo observations
- A priori accuracy defined by user
\rightarrow No weak equation system

Results - Interior Accuracy

- Enhancement of relative precision ~ 30 \%

Calibration model	Conventional	Extended
RMS $_{\mathbf{X Y Z}}$ (mm)	0.18	0.12
Relative precision by interior accuracy	$1: 80000$	$1: 110000$
Sigma 0 a posteriori	0.8	0.5

Results - Variation of Interior Orientation

- A priori accuracy interior orientation: $15 \mu \mathrm{~m}$
- Variation of principle distance:
$200 \mu \mathrm{~m}$
- Variation of principle point:
$140 \mu \mathrm{~m}$ in x -direction $90 \mu \mathrm{~m}$ in y -direction

- Raster-width of $2.35 \mathrm{~mm} \rightarrow 13: 9$
- A priori accuracy curvature constraints: $1 \mu \mathrm{~m}$
- Maximum length of correction vector: $8 \mu \mathrm{~m}$
- Tangential-asymmetric distortion

Results - Exterior Accuracy

- 1 Long distance information for scale definition
- Remaining distance observation as external control
$\rightarrow 12$ Carbon fibre scale bars ($<0.02 \mathrm{~mm}, 1 \sigma$)
$\rightarrow 12$ Long distance information ($0.3 \mathrm{~mm}, 1 \sigma$)

	DPA-Win	FiBun
Range	4.56 mm	0.85 mm
Stdev	0.99 mm	0.17 mm

Distance Observation

- FiBun - Extended calibration model
-DPA-Win - Conventional calibration model

Conclusions

Project CMS Yoke End Cap, J apan

Extended calibration model
\rightarrow Interior and exterior accuracy enhanced
\rightarrow Possible careless handling by untrained operator

Evaluation for different projects

Camera careful handled by photogrammetric experts Extended calibration model
\rightarrow No clear conclusion possible
\rightarrow Further investigation how results improve significantly

End

Thank you for your attention!

New Developments in Close Range Photogrammetry applied to Large Physics Detectors

Antje Behrens Christian Lasseur Dirk Mergelkuhl

