solving the hierarchy problem

Joseph Lykken Fermilab/U. Chicago

puzzle of the day: why is gravity so weak?

answer:

because there are large or warped extra dimensions about to be discovered at colliders

puzzle of the day: why is gravity so weak?

real answer:
don't know
many possibilities
may not even be a well-posed question

outline of this lecture

- what is the hierarchy problem of the Standard Model
- is it really a problem?
- what are the ways to solve it?
- how is this related to gravity?

what is the hierarchy problem of the Standard Model?

- discuss concepts of naturalness and UV sensitivity in field theory
- discuss Higgs naturalness problem in SM
- discuss extra assumptions that lead to the hierarchy problem of SM

UV sensitivity

 Ken Wilson taught us how to think about field theory:

"UV completion" = high energy effective field theory matching scale, Λ low energy effective field theory, e.g. SM

energy

UV sensitivity

- how much do physical parameters of the low energy theory depend on details of the UV matching (i.e. short distance physics)?
- if you know both the low and high energy theories, can answer this question precisely
- ullet if you don't know the high energy theory, use a crude estimate: how much do the low energy observables change if, e.g. you let $\Lambda o 2\Lambda$?

degrees of UV sensitivity

parameter

UV sensitivity

"finite" quantities	none UV insensitive	
dimensionless couplings e.g. gauge or Yukawa couplings	logarithmic UV insensitive	
dimension-full coefs of higher dimension "irrelevant" operators e.g. 4-fermion coupling in Fermi theory	inverse power of cutoff UV sensitive but suppressed	
dimension-full coefs of lower dimension operators, e.g. scalar mass-squared, vacuum energy, etc.	positive power of cutoff UV sensitive	

what do UV sensitive parameters do?

denote a generic UV sensitive parameter as **m** then there are 4 possibilities:

- ullet natural: ${f m}\sim {f \Lambda}$, e.g. ${f m}\simeq {f g}{f \Lambda}/4\pi$ for Higgs scalar
- ullet symmetry-natural: there is a symmetry limit where ${f m}=0$ (e.g. chiral symmetry for fermion masses). then can have ${f m}\ll \Lambda$ because the symmetry is weakly broken (somehow).
- **supernatural:** there is tuning at the matching scale due to some feature of the UV theory. e.g. $\mathbf{m_1} = \mathbf{m_2}$, and the radiative corrections to this relation have only a log dependence on the cutoff.
- unnatural: there is a fine-tuning at the matching scale that produces ${f m}\ll\Lambda$ this UV tuning somehow corrects for the large radiative corrections of the low energy theory.

naturalness

A **natural** theory is one in which all of the physical parameters are some combination of **UV** insensitive, natural, and symmetry-natural.

- ullet natural: $m\sim \Lambda$
- ullet symmetry-natural: there is a symmetry limit where ${f m}=0$ (e.g. chiral symmetry for fermion masses). then can have ${f m}\ll \Lambda$ because the symmetry is weakly broken (somehow).
- **supernatural:** there is tuning at the matching scale due to some feature of the UV theory. e.g. $\mathbf{m_1} = \mathbf{m_2}$, and the radiative corrections to this relation have only a log dependence on the cutoff.
- ullet unnatural: there is a fine-tuning at the matching scale that produces ${f m}\ll\Lambda$ this UV tuning somehow corrects for the large radiative corrections of the low energy theory.

tuning

A **supernatural** theory is not strictly natural, but one expects real world theories to have mysterious relations that only get explained when you discover the UV theory - so this is OK.

- ullet natural: $m\sim \Lambda$
- ullet symmetry-natural: there is a symmetry limit where ${f m}=0$ (e.g. chiral symmetry for fermion masses). then can have ${f m}\ll \Lambda$ because the symmetry is weakly broken (somehow).
- **supernatural:** there is tuning at the matching scale due to some feature of the UV theory. e.g. $\mathbf{m_1} = \mathbf{m_2}$, and the radiative corrections to this relation have only a log dependence on the cutoff.
- ullet unnatural: there is a fine-tuning at the matching scale that produces ${f m}\ll\Lambda$ this UV tuning somehow corrects for the large radiative corrections of the low energy theory.

fine-tuning

An **unnatural** theory is fine-tuned. This is bad, because there are no known physical mechanisms to produce fine-tuned theories. The only known explanation for fine-tuning is accidental relations in the UV parameters.

- natural: $m \sim \Lambda$
- ullet symmetry-natural: there is a symmetry limit where ${f m}=0$ (e.g. chiral symmetry for fermion masses). then can have ${f m}\ll \Lambda$ because the symmetry is weakly broken (somehow).
- **supernatural:** there is tuning at the matching scale due to some feature of the UV theory. e.g. $\mathbf{m_1} = \mathbf{m_2}$, and the radiative corrections to this relation have only a log dependence on the cutoff.
- ullet unnatural: there is a fine-tuning at the matching scale that produces ${f m}\ll\Lambda$ this UV tuning somehow corrects for the large radiative corrections of the low energy theory.

the Higgs naturalness problem

- now apply this wisdom to the Higgs mass squared parameter of the SM.
- this parameter is UV sensitive, so how do we explain its value?
- ullet the natural explanation is that $|\mu|\simeq g\Lambda/4\pi$ so $\Lambda\sim 1~{
 m TeV}$

SM is natural, and is replaced by e.g. supersymmetry, technicolor, etc at the TeV scale.

the little hierarchy problem

- this explanation is now under attack from the electroweak precision data
- if $\Lambda \sim 1~{
 m TeV}$, then we would generically expect to already be seeing evidence of higher dimension operators constructed out of SM fields
- there are many dimension 5 and 6 operators that obey all of the symmetries of the SM
- but there is no evidence for any of them in the data!

ullet if we assume that the dimensionless couplings are of order one (may not be true!) then $\Lambda\sim 1~{
m TeV}$ is ruled out

Dimensions six		$m_h = 115 \mathrm{GeV}$		
operators		$c_i = -1$	$c_i = +1$	
\mathcal{O}_{WB}	=	$(H^{\dagger} \tau^a H) W^a_{\mu\nu} B_{\mu\nu}$	9.7	10
\mathcal{O}_H	=	$ H^\dagger D_\mu H ^2$	4.6	5.6
\mathcal{O}_{LL}	=	$rac{1}{2}(ar{L}\gamma_{\mu} au^aL)^2$	7.9	6.1
\mathcal{O}_{HL}'	=	$ar{i}(H^{\dagger}D_{\mu} au^{a}H)(ar{L}\gamma_{\mu} au^{a}L)$	8.4	8.8
\mathcal{O}_{HQ}'	=	$i(H^{\dagger}D_{\mu}\tau^{a}H)(\bar{Q}\gamma_{\mu}\tau^{a}Q)$	6.6	6.8
\mathcal{O}_{HL}	=	$i(H^{\dagger}D_{\mu}H)(\bar{L}\gamma_{\mu}L)$	7.3	9.2
\mathcal{O}_{HQ}	=	$i(H^{\dagger}D_{\mu}H)(\bar{Q}\gamma_{\mu}Q)$	5.8	3.4
\mathcal{O}_{HE}	=	$i(H^{\dagger}D_{\mu}H)(\bar{E}\gamma_{\mu}E)$	8.2	7.7
\mathcal{O}_{HU}	=	$i(H^{\dagger}D_{\mu}H)(\bar{U}\gamma_{\mu}U)$	2.4	3.3
\mathcal{O}_{HD}	=	$i(H^{\dagger}D_{\mu}H)(\bar{D}\gamma_{\mu}D)$	2.1	2.5

Table 1: 95% lower bounds on Λ/TeV for the individual operators the SM for $m_h > 115 \,\text{GeV}$.

R. Barbieri and A. Strumia, hep-ph/0007265

little higgs models

- if we take the little hierarchy problem at face value, then the natural solution of the SM Higgs naturalness problem is insufficient
- however we can still preserve naturalness of the SM by reverting to symmetry-natural
- e.g. in Little Higgs models, the Higgs is a pseudo-Goldstone boson of the UV theory
- ullet this allows us to push Λ up to 10 TeV, while keeping the SM natural
- the price is that the SM has to be extended to include extra TeV mass particles

living with SUSY

- another possibility is to replace natural with supernatural
- thus we imagine that Λ is somewhat higher than a TeV, but there is a little tuning going on, for reasons which will become obvious after we get a handle on the UV theory
- for supersymmetry models, which are further constrained by WMAP and the lower bound on the Higgs mass from LEP, this is a strong possibility
- in this case the SM is not natural, but we shouldn't worry too much

living with SUSY

$$M_Z^2 = -1.8\mu^2(\text{UV}) + 5.9M_3^2(\text{UV}) - 0.4M_2^2(\text{UV}) - 1.2m_{H_U}^2(\text{UV}) + 0.9m_{Q_3}^2(\text{UV}) + 0.7m_{U_3}^2(\text{UV}) - 0.6A_t(\text{UV})M_3(\text{UV}) - 0.1A_t(\text{UV})M_2(\text{UV}) + 0.2A_t^2(\text{UV}) + 0.4M_2(\text{UV})M_3(\text{UV}) + \dots$$

- here is a typical SUSY formula matching the SM
 Z mass to soft parameters of the SUSY model
- using their log running, the soft parameters have in turn been run up to their UV cutoff, which in this case is the GUT scale (denoted "UV")
- their could be cancellations here, which would then explain why superpartners and the Higgs haven't been seen yet

the hierarchy problem of the SM

- since the SM is renormalizable, no reason in principle not to have $\Lambda=10^{120}~{\rm GeV},$ (although it will then probably be strongly coupled or unstable in the UV)
- but gravity exists, and gravity effects in loops are not negligible for scales above $\frac{1}{\sqrt{8\pi G_N}} = \frac{M_{\rm Planck}}{\sqrt{8\pi}} \simeq 10^{18}~{
 m GeV}$
- ullet so why not take $\Lambda \sim 10^{18}~{
 m GeV}$?
- but then the Higgs naturalness problem becomes much worse, since now the only remaining alternative is that the SM is unnatural and finetuned.

the hierarchy problem of the SM

- \bullet of course if $\frac{M_W}{M_{\rm Planck}}$ were 0.1 instead of 10^{-16} then the Higgs naturalness problem would be unaffected
- so the hierarchy problem of the SM boils down to the mystery of why $\frac{M_W}{M_{Planck}}$ is so small.
- note that the question here is not "why is gravity so weak", but rather "why is the EW scale so small in units of the (assumed) cutoff?"

other hierarchy problems

- suppose that the SM turns out to be natural or at least supernatural
- and suppose the UV theory which replaces it is natural (e.g. technicolor-like models and many SUSY models)
- then naturalness is no longer an issue, but the mystery of the hierarchy between the EW scale and the Planck scale remains
- in both SUSY and technicolor-like models, the generic answer is that log running of (non-SM) gauge couplings induce exponential hierarchies (just like in the SM, where $\Lambda_{\rm QCD}/M_{\rm W}\sim .003$)
- this is a simple and robust mechanism
- its drawback is that it requires strong model assumptions and many new degrees of freedom, whose explanation is put off to the ultimate unified theory

other hierarchy problems

- it is also important to note the SM has other hierarchy problems:
- $\bullet \;\; \mbox{for example, why is} \;\; \frac{m_u}{m_t} \; \mbox{so small} \; < 10^{-4} \; ?$
- a generic and robust mechanism to explain at least some of these
 SM flavor hierarchies is to invoke broken flavor symmetries
- turn off the Yukawa couplings of the SM, and there is a $[\mathbf{U}(3)]^5$ global flavor symmetry mixing the 5 types of SM fermions: Q, U, D, L, E
- if we e.g. gauge a diagonal $\mathbf{U}(2)$ of this, then only the third generation fermions get mass in the limit that this flavor symmetry is unbroken
- note these flavor hierarchy problems are not naturalness problems

is the SM hierarchy problem really a problem?

the SM hierarchy problem arose from the SM Higgs naturalness problem only when we made some additional assumptions, to whit:

- I. the SM cutoff isn't TeV
- 2. the cutoff scale has something to do with gravity
- 3. there is a "quantum gravity" cutoff not far below the scale at which gravity becomes strong
- 4. the scale at which gravity becomes strong is given by the Cavendish result $M_{\rm Planck}=\frac{1}{\sqrt{G_N}}=10^{19}{\rm GeV}$

these assumptions could be wrong!

let's examine these assumptions:

Assumption I: the SM cutoff isn't TeV

- we have already argued that the SM cutoff is probably no more than a few TeV.
- we are building a multi-billion dollar supercollider based upon this belief!
- however we already noted that this just means that the SM hierarchy problem gets replaced by e.g. the SUSY hierarchy problem
- in that case we also need to know (rather urgently) whether the new theory above the TeV scale is natural or not.

Assumption 2: the cutoff scale has something to do with gravity

• this is not obvious since, even if we allow the SM to be unnatural, there are other reasons (unrelated to gravity) that could impose a lower cutoff:

K. Riesselmann hep-ph/9711456

$$rac{\mathrm{d}\lambda_{\mathbf{h}}}{\mathrm{dlog}\Lambda} = rac{\mathbf{3}}{\mathbf{2}\pi^{\mathbf{2}}} \left[\lambda_{\mathbf{h}}^{\mathbf{2}} - rac{1}{4}\lambda_{\mathbf{t}}^{\mathbf{4}} + \cdots
ight]$$

 $\lambda_{
m h}$ hits Landau pole, i.e. blows up

 $\lambda_{\mathbf{h}}$ goes negative, destabilizes vacuum

Assumption 3: there is a "quantum gravity" cutoff not far below the scale at which gravity becomes strong

- classical gravity certainly exists, but nobody knows if we are really supposed to put off-shell gravitons in loop diagrams
- string theory provides consistent well-defined examples of quantum gravity coupled to gauge fields and matter
- in these examples there is a stringy cutoff scale M_s , related to the Planck scale by $M_s \sim g_s M_{\rm Planck}$, where g_s is the string coupling
- in some cases (the heterotic string) the string coupling is related to the SM gauge couplings, implying that indeed the stringy cutoff is not far below the Planck scale
- but in other cases (branes) the stringy cutoff can be far below the Planck scale

Assumption 4: the scale at which gravity becomes strong is given by the Cavendish result $\rm \ M_{Planck}=\frac{1}{\sqrt{G_N}}=10^{19}GeV$

- thanks to Arkani-Hamed, Dimopoulos and Dvali, we now realize that this assumption is very naive
- gravity is a poorly understood force
- it is only well-measured at energy scales up to $10^{-3} {
 m eV}$, and very crudely probed up to about a TeV
- how naive to extrapolate this poorly understood theory another 16 to 31 orders of magnitude!
- ullet e.g. an extra spatial dimension of size ${\bf R}$, anywhere in these 31 orders of magnitude, will lower the strong gravity scale to

$$\mathbf{M}_* = \left\lceil rac{\mathbf{M}_{ ext{Planck}}^{\mathbf{2}}}{\mathbf{R}}
ight
ceil^{\mathbf{1/3}}$$

solutions of the hierarchy problem

let's review the possible solutions (in order of plausibility):

- I. The SM is replaced by a new effective theory at the TeV scale. This new theory is natural, with a cutoff close to the Planck scale. The EW scale is related to a natural scale in the new theory, produced by log running of gauge of other dimensionless couplings. Examples: many SUSY models, technicolor-like models.
- 2. Same thing but there are several stages of new UV theories before you get to the Planck scale.
- 3. Same thing but the new theory is not natural, i.e. there is fine-tuning near the Planck scale. Some new principle explains both the Higgs fine-tuning and the cosmological constant fine-tuning.

Arkani-Hamed and Dimopoulos, hep-ph/0405159

4. There is no hierarchy because the string scale is only a few TeV, or the effective Planck scale is only a few TeV (due to large or warped extra dimensions).

a new principle of tuning?

- Before 1998, the Higgs was the only fine-tuning problem, and it had several good solutions.
- If the dark energy is vacuum energy, then we another (even worse) fine-tuning problem. Doesn't have any good solutions.
- If there is some new fundamental principle to explain the finetuning of the vacuum energy, it might also apply to all UV sensitive parameters.

