Higgsless Models of ElectroWeak Symmetry Breaking

G. Cacciapagliaa, C. Csákia, C. Grojeanb,c and J. Terningd

October 18, 2004

a Institute for High Energy Phenomenology
Newman Lab., Cornell University, Ithaca, NY 14853, USA
b SPhT, CEA Saclay, F91191 Gif-sur-Yvette, France
c Michigan Center for Theoretical Physics, Ann Arbor, MI 48109, USA
d Theory Division T-8, LANL, Los Alamos, NM 87545, USA
cacciapa@mail.lns.cornell.edu, csaki@lepp.cornell.edu, grojean@spht.saclay.cea.fr, terning@lanl.gov

Abstract

We present Higgsless models where the electroweak symmetry breaking is achieved by suitable boundary conditions for the gauge fields. We study tree level corrections to precision electroweak physics. Such models inherit from their similarity with technicolor theories a large contribution to the oblique parameters, S in particular. We show that it is possible to suppress S using brane induced kinetic terms and unequal left-right bulk gauge couplings, paying the price of heavy KK modes. In the allowed region, they are eventually ineffective in restoring perturbative unitarity in W scattering above 2 TeV. Although it looks like a Higgsless models’ bane, we show that such problem can be easily solved by delocalizing the light fermions in the bulk.

1 Higgsless models

Notwithstanding the amazing success of the Standard Model (SM) in describing high energy physics, we are still missing experimental information
about its main ingredient: the mechanism of electroweak symmetry breaking. This lack has left open space for theoretical speculations and for pursuing more or less radical alternatives. The main theoretical motivation is the need to stabilize the Higgs mass against radiative correction. A recent new proposal is the Higgsless scenario [1]. In extra dimensions, it is indeed possible to break gauge symmetries via boundary conditions, without any light scalar appearing in the theory. Now, the scattering amplitude of longitudinal W bosons is unitarized by the gauge boson resonances, rather than by the Higgs field [2], thanks to the following sum rules relating the masses and the effective couplings of the KK modes:

$$g_{WWWW}^2 - e^2 - \sum_k g_{WWZ_k}^2 = 0;$$

$$4M_W^2 g_{WWWW}^2 - 3 \sum_k g_{WWZ_k}^2 M_{Z_k}^2 = 0.$$ (2)

These sum rules are a direct consequence of 5D gauge invariance and they hold even in presence of gauge symmetry breaking boundary conditions.

An enlarged bulk gauge symmetry $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ together with a warped background yields a double advantage [3]: a custodial symmetry protects the correct M_Z/M_W ratio and the warping raises the resonance masses to a realistic level. Similarly, fermion masses can be generated by boundary conditions [4].

Such models also show several similarities with technicolor models via the AdS/CFT correspondence, in particular large oblique corrections are expected. Indeed, in the simplest model S turns out to be of order one, resulting from the tree level mixing with the KK modes. Before discussing the details of precision physics, we will briefly summarize the structure of the model [1, 5]. We will consider a bulk $SU(2)_L \times SU(2)_R \times U(1)_{B-L}$ gauge theory on an AdS$_5$ background, working in the conformally flat metric. The AdS curvature R is assumed to be of order $1/M_{Pl}$, however it is a freely adjustable parameter. The parameter R' sets the scale of the gauge boson masses, and will therefore be $R' \sim 1/$TeV. We will use the usual bulk Lagrangian, with canonically normalized kinetic terms and in the unitary gauge, where all the A_5's decouple and we are left with a KK tower of vector fields, $(A_L^\mu, A_R^\mu, B_\mu)$. We denote the 5D gauge couplings by g_{5L}, g_{5R} and \tilde{g}_5. Electroweak symmetry breaking is achieved by the boundary conditions that break $SU(2)_L \times SU(2)_R \rightarrow SU(2)_D$ on the TeV brane and $SU(2)_R \times U(1)_{B-L} \rightarrow U(1)_Y$ on the Planck brane.
We also consider kinetic terms allowed on the branes, that in terms of field stress tensors can be parametrized:

$$\mathcal{L} = -\left[\frac{\tau}{4} W_{\mu \nu}^L \delta(z - R) + \frac{\tau'}{4} B_{\mu \nu}^Y \right] \delta(z - R)$$

$$- \frac{R'}{R} \left[\frac{\tau}{4} B_{\mu \nu}^L + \frac{\tau}{4} W_{\mu \nu}^D \right] \delta(z - R'),$$

where

$$A^D = (g_{5R} A^R + g_{5L} A^L) / \sqrt{g_{5R}^2 + g_{5L}^2}$$

and

$$B^Y = (g_{5R} A^R + \tilde{g}_5 B) / \sqrt{g_{5R}^2 + \tilde{g}_5^2}.$$
In the basic model, with \(g_{5L} = g_{5R} = g_5 \) and vanishing localized kinetic terms, the leading contribution to \(S \) in the \(1/\log \frac{R'}{R} \approx .3 \) expansion is:

\[
S \approx \frac{6\pi}{g^2 \log \frac{R'}{R}} \approx 1.15 ,
\]

while \(T \approx U \approx 0 \). This value of \(S \) is clearly too large to be compared with the experimental result\(^1\).

As we already mentioned, however, the theory has more parameters. We first study the effect of asymmetric bulk gauge couplings and Planck brane kinetic terms. The leading contribution to \(S \) is:

\[
S \approx \frac{6\pi}{g^2 \log \frac{R'}{R}} \left(\frac{2}{1 + g_{5L}^2} + \frac{1}{R \log R/R} \right) ,
\]

where, again, \(T \approx U \approx 0 \). Now, in case of large \(g_{5R}/g_{5L} \) ratio (or large \(SU(2)_L \) kinetic term) \(S \) is suppressed. However, the \(W \) mass squared is also parametrically multiplied by the same factor. This means that the smaller \(S \) the larger the scale of the KK resonances, \(1/R' \). So, in order to have small corrections we possibly enter a strong coupling regime, where the above calculation becomes meaningless.

Another set of parameters are the TeV kinetic terms. Their contribution is more complicated, so we will show some results at leading order for \(\tau, \tau' \ll R \log \frac{R'}{R} \). The \(SU(2)_D \) kinetic term appears at linear order, and effectively multiplies eq. 5 by a factor \(1 + \frac{\tau}{R} \). On the other hand, the \(U(1)_{B-L} \) kinetic term contributes at quadratic order. If only \(\tau' \) is turned on,

\[
S \approx \frac{6\pi}{g^2 \log \frac{R'}{R}} - \frac{8\pi}{g^2} \left(1 - \left(\frac{g'}{g} \right)^2 \right) \frac{\tau'^2}{(R \log R/R)^2} ,
\]

\[
T \approx -\frac{2\pi}{g^2} \left(1 - \left(\frac{g'}{g} \right)^4 \right) \frac{\tau'^2}{(R \log R/R)^2} ,
\]

while \(U \approx 0 \). So, \(S \) vanishes for \(\tau' \approx 0.15 R \log \frac{R'}{R} \). However, another effect is to make one of the \(Z' \) lighter, namely the one that couples with the

\(^1\)Actually, this number should not be compared with the usual SM fit, but we should disentangle the contribution of the Higgs. Namely, it is enough to do the fit assuming a large Higgs mass, equal to the cut-off of the theory [6]. We are also neglecting loop corrections from the gauge KK modes.
hypercharge.

Figure 1: Contourlines for $|S|$ (red) and $|T|$ (blue) at 0.3 and 0.5. The shaded region is excluded by LEP2, allowing a 3% deviation in the cross section (the dashed line corresponds to 2% deviation).

We also numerically scanned the parameter space to seek for a region
where the model is not ruled out. For different values of g_{5R}/g_{5L}^2, we scanned the $\tau - \tau'$ space (see fig. 1). Requiring both $|S|$ and $|T|$ to be smaller that 0.3, there is an allowed region only for large ratio, $g_{5R}/g_{5L} > 2.5$, where the theory is most likely strongly coupled. These results are in agreement with similar studies in [9] and [6].

3 Reducing S' by delocalizing the fermions in the bulk

We have studied the feasibility of the Higgsless models when facing precision electroweak tests. As originally proposed, the model seems to be disfavoured by the experiments, if one wants strong coupling to arise above 3 TeV. However, there is a simple solution that avoids such problems [10], namely to allow the light fermions leaking into the bulk. A simple 5D parameter, c_L, controls the localization of the fermion along the extra dimension: for $c_L > 1/2$ (resp. $c_L < 1/2$) the fermion is localized on the UV brane (resp. IR brane). In the case of almost flat fermions, $c_L \approx 1/2$, S vanishes and the resonances almost decouple with the light fermions, see fig. 2. The direct bounds are then easily avoided and the KK masses can be lowered increasing R, thus raising the cut-off of the theory. Therefore, a scenario with 600 GeV resonances and a perturbative regime up to 10 TeV is allowed. However the main challenge still facing Higgsless models is actually the successful inclusion of a heavy top quark, without stumbling over large corrections to bottom couplings with the Z. Further promising investigations in this direction are currently underway.

Acknowledgments

Csaba Csáki and Christophe Grojean would like to thank the organizers of Quarks 2004 for their invitation. The research of G.C. and C.C. is supported in part by the DOE OJI grant DE-FG02-01ER41206 and in part by the NSF grants PHY-0139738 and PHY-0098631. C.G. is supported in part by the RTN European Program HPRN-CT-2000-00148, by the ACI Jeunes Chercheurs 2068, by the ECO-NET program 08128UC funded by the French Foreign Minister and by the Michigan

\footnote{Using the Planck kinetic terms instead would only result in slightly different Z' couplings, and so different exclusion plots.}
Figure 2: On the left, contours of S (red), for $|S| = 0.25$ (solid) and 0.5 (dashed) and T (blue), for $|T| = 0.1$ (dotted), 0.3 (solid) and 0.5 (dashed), as function of the UV scale, R, and c_L, the parameter controlling the localization of the fermion along the extra dimension. On the right, contours for the generic suppression of fermion couplings to the first resonance with respect to the SM value. In particular we plotted the couplings of a lh down-type massless quark with the Z'. The region for c_L, allowed by S, is between $0.43 \div 0.5$, where the couplings are suppressed at least by a factor of 10.

Center for Theoretical Physics. J.T. is supported by the US Department of Energy under contract W-7405-ENG-36.

References

