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I discuss two applications of chiral lagrangian to multiquark hadrons : (i) the dipion invariant
mass spectrum in X(3872) → J/ψππ and (ii) some properties of pentaquark baryons.

I. DIPION SPECTRUM IN X(3872) → J/ψππ

B decay is a good place to look for charmonium states
which are either above the D(∗) ¯D(∗) threshold or have
quantum numbers that are not accessible from n3S1

states by cascade decays. 23PJ ,3DJ and 11P1 states
are such examples [1]. Recently, Belle collaboration re-
ported a new narrow resonance X(3872) in B → XK →
(J/ψππ)K decay channel [2].Following this observation,
there appearted a lot of attempt to understand this new
narrow resonance (see Ref. [3] for a recent review). In
particular, Pakvasa and Suzuki pinned down possible
quantum numbers for JPC(X) [4] as follows:

• If it is a charmonium, it should be either 13D2(2
−−)

or 21P1(1
+−).

• If X(3872) is the DD∗ molecular state, it should
be either JPC = 1+− with I = 0, or JPC = 1++

with I = 1.

The angular distribution of dipions would be useful to
determine the JPC quantum number of X(3872) [4].

In this talk, I argue that the dipion invariant mass
spectrum in X → J/ψππ provides independent informa-
tion on the nature of X(3872) (see Ref. [5] for details).
Our method is complementary to the angular correla-
tions suggested in Ref. [4], and already seem to eliminate
a possibility that X = 1P 1 state.

Hadronic transition between heavy quarkonia can be
described in terms of QCD multipole expansion or chiral
perturbation theory. Since the allowed dipion invariant
mass in X(k, εX) → J/ψ(k

′

, εψ) π(p1)π(p2) is

2mπ ≤ mππ ≤ (MX −MJ/ψ) = 775 GeV ≈ mρ,

both approaches will be (marginally) suitable to our pur-
pose.

Under global chiral SU(3)L × SU(3)R, the pion field
Σ(x) ≡ exp(2iπ(x)/fπ) transforms nonlinearly as

Σ(x) → LΣ(x)R†.

Under parity P and charge conjugation C, the pion fields
transform as

P : π(t, ~x) → −π(t,−~x), Σ(t, ~x) → Σ†(t,−~x)

C : π(t, ~x) → π(t, ~x)T , Σ(t, ~x) → Σ(t, ~x)T (1)
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TABLE I: Transformation properties of Xv, ψv and v under
parity and charge conjugation.

Fields P C

vµ vµ = (v0,−~v) vµ = (v0, ~v)

ψµ
v ψvµ −ψµ

v

Xµν
v (3D2) −Xvµν −Xµν

v

Xµ
v (1P1) −Xvµ −Xµ

v

Xµ
v (JPC = 1++) −Xvµ Xµ

v

We impose parity P and charge conjugation C as symme-
tries of the effective chiral lagrangian, since all the decays
under consideration occur through strong interactions.

Since the final charmonium is moving very slowly in
the rest frame of the initial state X(3872), we can use the
heavy particle effective theory approach, by introducing
a velocity dependent field Xv(x) ≡ XeimXv·x, and simi-
larly for J/ψ field ψv(x) [6]. Then we can construct chiral
lagrangian using the pion field Σ(x) and chiral singlets
Xv(x), ψv(x), εµναβ , and the velovity vµ. Transforma-
tion properties of Xv(x), ψv(x) and vµ under parity and
charge conjugation are given in Table 1.

A remark is in order before we procees. For ψ
′

→
J/ψππ or Υ(3S) → Υ(1S)ππ, there are 4 independent
chirally invariant operators to lowest order in pion mo-
menta:

M ∼ ε · ε
′ [
q2 +BE1E2 + Cm2

π

]

+ D
(
ε · p1ε

′

· p2 + ε · p2ε
′

· p1

)
,

with B,C,D ∼ O(1). QCD multipole expansion predicts

that B = D = 0, which is consistent with ψ
′

→ J/ψππ
or Υ(2S) → Υ(1S)ππ decays, but not with Υ(3S) →
Υ(1S)ππ . In chiral lagrangian approach, B,C,D be-
ing apriori unknown with similar sizes of O(1). One has
to fix B,C,D from the mππ spectrum and predict other
observables [7]. Namely, one cannot make definite pre-
dictions for the mππ spectrum in 3S1 →3 S1ππ. On the
other hand, there is only single chirally invaraint opera-
tor to lowest order in pion momenta in the three options
for the JPC(X) we consider in this talk, and we can make
a definite prediction for mππ sprectrum.

If X(3872) = 13D2(2
−−), then the decay X → J/ψππ

is described by the following chiral lagrangian:

L = g(3D2) ε
µναβ vµψv,νXv,αρ Tr

[
∂βU∂

ρU †]+h.c. (2)



FIG. 1: Dipion invariant mass spectra for JPC(X) = 2−−

(red), JPC(X) = 1+− (green) and JPC(X) = 1++ (blue).
The vertical scale is arbitrary for each case, and the area
under a curve has no meaning in this plot. The shaded (pink)
region is kinematically forbidden region.

where the coupling g(3D2) is unknown parameter, that
should be determined by the data or could be calculated
within QCD multipole expansion. Note that there is only
one operator that contributes to the decay 13D2(2

−−) →
J/ψππ, so that we can predict the ππ spectrum without
any ambiguity. Now it is straightforward to calculate
the dipion invariant mass spectrum using the above la-
grangian. The resulting spectrum is shown in Fig. 1 in
the (red) solid curve. Note that the dipion invariant mass
has a peak at high mππ region, which is consistent with
the preliminary Belle data [2].

If X is a charmonium 1P1 state with JPC = 1+− and
I = 0, the relevant chiral lagrangian is given by

L = g(1P1) ε
µναβ Xvµψvν Tr ∂αU∂βU

† (3)

where the coupling g(1P1) is an unknown parameter. If
X is a DD∗ molecular state with JPC = 1+−, we can-
not apply QCD multipole expansion. Still the chiral la-
grangian shown above is applicable.

We show the resulting ππ invariant mass spectrum in
Fig. 1 in the (green) dotted curve. Note that the dipion
spectrum has a peak at low mππ region, if X has JPC =
1+−, which is disfavored by the preliminary Belle data
[2]. Once high statistics data is obtained, one can easily
check if JPC(X) = 1+− is a correct assignment or not.

Let us finally discuss the case X(3872) = (1++, I = 1).
This case includes that the decaying state is I = 1 DD∗

molecular state and the final dipion is in I = 1, which
would be dominated by ρ meson. Since ρ0 → π0π0 is
forbidden by angular momentum conservation and Bose
symmetry, the ππ in X → J/ψππ should be charged
pions in this case. The mππ spectrum is basically the
Breit–Wigner profile of the ρ resonance, which is consis-
tent with the current Belle data. In this case, the po-
larization of ρ and J/ψ tends to be perpendicular with

each other, which can be tested by measuring the three–
momentum of a lepton in J/ψ → l+l− and the three–
momentum of a pion in ρ→ ππ decay.

Summarizing the first part of may talk, I pointed out
that the dipion invariant mass spectrum in X(3872) →
J/ψππ could be useful in determination of JPC quan-
tum number of the newly observed resonance X(3872).
In particular, the current preliminary data seems to al-
ready exclude the possibility X = 1P 1, since the dipion
invariant mass spectrum has a peak at low mππ region
in this case. This is apparently disfavored by the prelim-
inary Belle data.

II. PENTAQUARK BARYONS

Recently, five independent experiments reported ob-
servations of a new baryonic state Θ+(1540) with a very
narrow width < 5 MeV [8], which is likely to be a pen-
taquark state (uudds̄) predicted by Diakonov et al. [9].
Arguments based on quark models suggest that this state
is a member of SU(3) antidecuplet with spin J = 1

2 or 3
2 .

The hadro/photo production cross section would depend
on the spin J and parity P of the Θ+, and it is important
to have reliable predictions for these cross sections. In
the following, we construct a chiral lagrangian for pen-
taquark baryons assuming they are SU(3) antidecuplet
with J = 1

2 and P = +1 or −1. (The case for J = 3
2

can be discussed in a similar manner, except that antide-
cuplets are described by Rarita–Schwinger fields.) Then
we calculate the mass spectra of antidecuplets, their pos-
sible mixings with pentaquark octets, the decay rates of
antidecuplets, and cross sections for π−p → K−Θ+ and
γn → K−Θ+. Finally we describe how to include light
vector mesons in our framework, and how the low energy
theorem is recovered in the soft pion limit.

In the previous section, we already introduced Gold-
stone boson fields including pions and their transforma-
tion property under chiral SU(3). Let us denote baryon
octet including nucleons by B, and antidecuplet includ-
ing Θ+ by P . It is convenient to define another field ξ(x)
by Σ(x) ≡ ξ2(x), which transforms as [10]

ξ(x) → Lξ(x)U †(x) = U(x)ξ(x)R†.

The 3× 3 matrix field U(x) depends on Goldstone fields
π(x) as well as the SU(3) transformation matrices L and
R. It is convenient to define two vector fields with fol-
lowing properties under chiral transformations:

Vµ = 1
2 (ξ†∂µξ + ξ∂µξ

†), Vµ → UVµU
† + U∂µU

†,

Aµ = i
2 (ξ†∂µξ − ξ∂µξ

†), Aµ → UAµU
†. (4)

Note that Vµ transforms like a gauge field. The transfor-
mation of the baryon octet and pentaquark antidecuplet
P including Θ+ (I = 0) can be chosen as

Bij → U iaB
a
b U

† b
j , Pijk → Pabc U

† a
i U

† b
j U

† c
k,



where all the indices are for SU(3) flavor. The pen-
taquark baryons are related to Pabc = P(abc) by, for ex-

ample, P333 = Θ+, P133 = 1√
3
Ñ0, P113 = 1√

3
Σ̃−, and

P112 = 1√
3
Ξ−

3/2. Then, one can define a covariant deriva-

tive Dµ, which transforms as DµB → UDµBU
†, by

DµB = ∂µB + [Vµ, B].

Chiral symmetry is explicitly broken by non-vanishing
current-quark masses and electromagnetic interactions.
The former can be included by regarding the quark-mass
matrixm = diag (mu,md,ms) as a spurion with transfor-
mation property m→ LmR† = RmL†. It is more conve-
nient to use ξmξ+ ξ†mξ†, which transforms as an SU(3)
octet. Electromagnetic interactions can be included by
introducing photon field Aµ and its field strength tensor
Fµν = ∂µAν − ∂νAµ:

∂µΣ → DµΣ ≡ ∂µΣ + ieAµ[Q,Σ], (5a)

Vµ → Vµ + ie
2 Aµ(ξ

†Qξ + ξQξ†), (5b)

Aµ → Aµ − e
2Aµ(ξ

†Qξ − ξQξ†), (5c)

where Q ≡ diag (2/3,−1/3,−1/3) is the electric-charge
matrix for light quarks (q = u, d, s).

Now it is straightforward to construct a chiral la-
grangian with lowest order in derivative expansion.
The parity and charge-conjugation symmetric chiral la-
grangian is given by

L = LΣ + LB + LP , (6)

where

LΣ =
f2
π

4
Tr

[
DµΣ

†DµΣ − 2µm(Σ + Σ†)
]
, (7a)

LB = TrB(iD/−mB)B +DTrBγ5{A/,B}

+F TrBγ5[A/,B], (7b)

LP = P(iD/−mP)P + CPN
(
PΓPA/B +BΓPA/P

)

+HPNPγ5A/P , (7c)

where P is the parity of Θ+, Γ+ = γ5, and Γ− = 1, and
mP is the average of the pentaquark decuplet mass.

The Gell-Mann-Okubo formulae for pentaquark
baryons will be obtained from

Lm = αm P(ξmξ + ξ†mξ†)P . (8)

Expanding this, we get the mass splittings ∆mi ≡ mi −
mP within the antidecuplet. If the newly observed state
at a mass 1862± 2 MeV is identified as Ξ3/2, we find

m eN = 1647 MeV, meΣ = 1755 MeV. (9)

One can consider a mixing between pentaquark an-
tidecuplet Pabc and pentaquark octet Oa

b or with the
ordinary baryon octet in a similar fashion [12]. But we
do not pursue it furthermore here, since the current data
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FIG. 2: Feynman diagrams for π−p→ K−Θ+.
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FIG. 3: Feynman diagrams for γn→ K−Θ+.

on baryon sectors are not enough to study such mixings
in details.

Parameters in the above lagrangian are taken to have
the following numerical values: mB ≈ 940 MeV is the
nucleon mass, D ≈ −0.81 and F ≈ −0.47 at tree level,
and we assume m̂ = 0 and m2

η = (4/3) m2
K .

The coupling CPN is determined from the decay width
ΓΘ of the Θ+, which is dominated by K+n and K0p
modes:

C2
PN (P = +,−) = (2.7, 0.90)× ΓΘ/GeV.

The narrow width of Θ implies C2
PN ∼ 10−3. Under-

standing such a small CPN in strong interaction is one of
the important issues in pentaquark physics.

The coupling HPN is also unknown, and determines
transition rates between pentaquark antidecuplets with
pion or kaon emission. Unfortunately, such decays are
all kinematically forbidden, and cannot be used to fix
HPN . However, we expect that HPN ∼ O(1), without
any suppression as in CPN . This fact makes it impossible
to predict the cross section for π−p→ K−Θ+, even if we
ignore the uncertainties from form factors. In Figs. 2 (a)
and (b), we show the relevant Feynman diagrams. Note
that only Fig. 2 (a) was considered in the literature. How-

ever, there is an s−channel Ñ0(1647) exchange diagram
[ Fig. 2 (b) ] in our chiral lagrangian, since Θ+ is not an
SU(3) singlet, but belongs to the antidecuplet. Therefore
one has to keep both Figs. 2 (a) and (b) in order to get
an amplitude with correct SU(3) flavor symmetry. Since
the coupling HPN is not known, and we cannot make a
clean prediction for π−p→ K−Θ+ cross section.

Next, let us discuss photoproduction of Θ+ on nucle-
ons. For this purpose, we included the anomalous mag-
netic moments for nucleon octet (κn and κp) and pen-
taquark baryon Θ (κΘ). We expect that |κΘ| ∼ |κn| ∼
|κp|. The relevant Feynman diagrams for γn → K−Θ+



FIG. 4: (a) Cross sections for γn→ K−Θ+ and (b) the angu-
lar distribution for Eγ = 2 GeV in the center of momentum
frame.

are shown in Fig. 3. One salient feature of our approach
based on chiral perturbation theory is the existence of a
contact term for γK−nΘ+ vertex [Fig. 3 (d)] that arises
from the CPN term in Eq. (7c) with Eq. (5c), which is nec-
essary to recover U(1)em gauge invariance within spon-
taneously broken global chiral symmetries.

The cross sections and the angular distributions in the
center of momentum frame are shown in Fig. 4 (a) and
(b). Note that the parity-even case has larger cross sec-
tion, and has a sharp rise near the threshold. The angular
distribution shows that the forward/backward scattering
is suppressed in the negative parity case, whereas the for-
ward peak is present in the positive parity case. There-
fore the angular distribution could be another useful tool
to determine the parity of Θ+. Therefore, once C2

PN is
determined from ΓΘ, one could determine the parity of
Θ+, and make a rough estimate of κΘ from the photo-
production cross section. Again we have to keep in mind
that there is additional model dependence from unknown
form factors.

One can also introduce light vector mesons ρµ, which
transforms as ρµ(x) → U(x)ρµ(x)U

†(x) + U(x)∂µU
†(x),

under global chiral transformations [13]. Then ρµ(x)
transforms as a gauge field under local SU(3)’s defined

by Eq. (1), as Vµ does. The covariant derivative Dµ can
be defined using ρµ instead of Vµ. Note that (ρµ − Vµ)
has a simple transformation property under chiral trans-
formation: (ρµ − Vµ) → U(x)(ρµ − Vµ)U

†(x), and it is
straightforward to construct chiral invariant lagrangian
using this new field. In terms of a field strength tensor
ρµν ,

Lρ = −
1

2
Tr(ρµνρ

µν) +
1

2
m2
ρ Tr(ρµ − Vµ)

2

+ α
[
P(ρ/ − V/ )B +B(ρ/ − V/ )P

]
+ ...

It is important to notice that NΘ+K∗ coupling (∝ α)
should be highly suppressed, since it can appear only
in combination of (ρµ − Vµ), which vanishes in the low-
energy limit. In other words, the low-energy theorem is
violated if one includes only nΘ+K∗ diagram, without
including the nΘ+Kπ contact term arising from the V/
term. Therefore, one should be cautious about claiming
that the K∗ exchange is important in π−p→ K−Θ+.

Summarizing the second half of my talk, we con-
structed a chiral lagrangian involving pentaquark baryon
antidecuplet and octet, the ordinary nucleon octet and
Goldstone bosons. Using this lagrangian, we derived the
Gell-Mann-Okubo formula and the mixing between the
pentaquark antidecuplet and pentaquark octet. We also
discussed π−p→ K−Θ+ and γn→ K−Θ+ for JP = 1

2
±.

In particular, we emphasized that it is very important to
respect chiral symmetry properly in order to get correct
amplitudes for these processes.
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