Λ (1405) and Negative-Parity Baryons in Lattice QCD

Y.Nemoto (RIKEN-BNL)
N.Nakajima (Kochi U.)
H.Matsufuru (KEK)
H.Suganuma (Tokyo Inst.Tech.)

The Λ (1405) Particle

- Mass: ~1406.5 MeV Width: ~50 MeV $\mathbf{I}=\mathbf{0}, \mathbf{J}=\mathbf{1} / \mathbf{2}$, Negative-parity
discovered by 1961 (Alston et al. PRL6,698)
- Lightest negative-parity baryon although it has a s-quark. (c.f. $\mathrm{N}(1535)$)

3-quark state picture of $\Lambda(1405)$

- Quark Model spin-flavor $\mathbf{S U (6)}$ 70-plet rep. ($L=1^{-}$)

SU(3)	J	S=0	$\mathrm{S}=\mathbf{- 1 , I = 0}$	$\mathrm{S}=\mathbf{- 1 , I = 1}$	$S=-2$	S=-3
8(2)	1/2	N(1535)	$\Lambda(1670)$	$\Sigma(1620)$	$\Xi($)	
	3/2	$\mathrm{N}(1520)$	$\Lambda(1690)$	$\Sigma(1670)$	$\Xi(1820)$	
8(4)	1/2	$\mathrm{N}(1650)$	$\Lambda(1800)$	$\Sigma(1750)$	$\Xi($?	
	3/2	$\mathrm{N}(1700)$	Λ (?)	$\Sigma($? $)$	$\Xi(?)$	
	5/2	$\mathrm{N}(1675)$	$\Lambda(1830)$	$\Sigma(1775)$	$\Xi(?)$	
10(2)	1/2	$\Delta(1620)$	-	$\Sigma($? $)$	$\Xi(?)$	$\Omega(?)$
	3/2	$\Delta(1700)$,	$\Sigma($?	$\Xi(?)$	$\Omega(?)$
1(2)	1/2	,	$\Lambda(1405)$,	,	
	3/2		$\Lambda(1520)$,	,	

From Reviews of Particle Data

3-quark state picture of $\Lambda(1405)$

- Quark Model
Λ (1405): flavor-singlet $\mathrm{J}^{\mathrm{P}}=\frac{1^{-}}{2}$ Prediction: $\sim 1.5 \mathrm{GeV}$
$\begin{gathered}\text { almost degenerate with } \Lambda(1520), J^{P} \\ \text { Isgur and Karl,PRD18,4187(1978) }\end{gathered}=\frac{3^{-}}{2}$
"LS Puzzle"
$\Lambda(1520)-\Lambda(1405)$ splitting needs a large LS force.
However, other states have very small LS contribution.

$$
\text { (c.f. } N(1535)-N(1520), \quad \Lambda(1670)-\Lambda(1690))
$$

Naïve quark model fails to reproduce Λ (1405).

Meson-Baryon Composite Picture

$\Lambda(1405)$ is just below the $\bar{K} N$ threshold ($\sim 1440 \mathbf{~ M e V) ~}$ and clearly seen in $K^{-} p \rightarrow \Sigma \pi$ reactions.
$\bar{K} N$ bound state?
(or $\pi \sum$ resonance state?)
5-quark state rather than a 3-quark state?

If so, where is the missing flavor-singlet 3-quark state? Is it a mixed state between two pictures?

No definite conclusion

Recent Work

- 3-quark picture

1/Nc approach Schat,Goity,Scoccola, PRL88,100202(2002)
States: Constituent quark picture
Nc-1 "core" quarks in the ground state and an (l=1) excited quark
Operators: pick up all possible ops up to $1 / \mathbf{N c}$
Ex: $\quad S^{C} \cdot S^{C}$ term Core quark spin-spin int.
This does not affect the singlet Λ.
It resolves $\Lambda(1405)-\Lambda(1520)$ splitting and concludes they are LS partners of the flavor-singlet.

- Meson-baryon composite picture
chiral dynamics Lutz's tallk, Hyodo's tallk

chiral unitary approach Osaka, Valencia group
Two resonances around 1.4 GeV .

$$
\left\{\begin{array}{l}
\text { Lower pole strongly couples to } \pi \sum \text { channels. } \\
\text { Flavor-singlet } \\
\text { Higher pole strongly couples to } \bar{K} N \text { channels. }
\end{array}\right.
$$

Flavor-octet, isosinglet
$\Lambda(1405)$ is a superposition of these two resonances.

What's interesting?

If $\Lambda(1405)$ is 5 -quark (like $\bar{K} N$) dominant, ...

- $\Lambda(1405)$ in nuclear medium

Pauli blocking effect of the prorton in the $\Lambda(1405)$ changes $K^{-} p$ scattering amplitudes.

$$
\left\{\begin{array}{l}
\text { Mass shift of } \Lambda(1405) \\
\text { Change of the } K^{-} \text {potential }
\end{array}\right.
$$

Kaon condensation, such as, in neutron stars
K^{-}nuclear bound states
Akaishi's talk, Yamazaki's tallk, Dote's tallk
It is important to identify the quark content in astrophysics and hyper-nuclear physics, too.

$\Lambda(1405)$ in Lattice QCD

- 3 or 5 ?

All the calculations are based on the 3-quark picture. 5 -quark evaluation has not been done yet.

Recent work based on the 3-quark picture (quenched calc.)

- Y.N, N.Nakajima, H.Matsufuru, H.Suganuma PRD68, 094505 (2003) (Our result)
- W.Melnitchouk, S.Bilson-Thompson, F.D.R.Bonnet, J.N.Hedditch, F.X.Lee, D.B.Leinweber, A.G.Williams, J.M.Zanoti, J.B.Zhang (Australia group) PRD67, 114506 (2003)
-F.X.Lee, S.J.Dong, T.Draper, I.Horvath, K.F.Liu, N.Mathur,
J.B.Dong (Kentucky group)

NP(Proc.Suppl.)119, 296(2003) (proc. of Lattice2002)

Basics of Lattice QCD

Evaluate path integral for QCD using important sampling

$$
\int[d U][d \psi][d \bar{\psi}] \exp \left\{\sum\left[-\beta S_{g}+\bar{\psi}(D+m) \psi\right]\right\}=\int[d U] \operatorname{det}(D+m) \exp \left\{\sum\left(-\beta S_{g}\right)\right\}
$$

2-point pion correlation function (Baryons are similar.)

$\left\langle\left(\bar{\psi} \gamma_{5} \tau^{a} \psi\right)_{x}\left(\bar{\psi} \gamma_{5} \tau^{b} \psi\right)_{y}\right\rangle$

Quenching effects

- No sea quark

The quench QCD is more "valence-like" than full QCD.

$$
』
$$

It is more suitable to study whether
$\Lambda(1405)$ is $3-q$ dominant or $5-q$ dominant than full QCD.

$\Lambda(1405)$ currents

- flavor-singlet operator

$$
\left(u C \gamma_{5} d\right) s+\left(d C \gamma_{5} s\right) u+\left(s C \gamma_{5} u\right) d \quad C \text { : charge conjugate matrix }
$$

[c.f. nucleon operators (proton)
$\left(u C \gamma_{5} d\right) u$ and $(u C d) \gamma_{5} u \quad 2$ linear independent ops.

- "common" operator (Australia group)

$$
\begin{aligned}
\text { octet: } & -2\left(u C \gamma_{5} d\right) s+\left(d C \gamma_{5} s\right) u+\left(s C \gamma_{5} u\right) d \\
\text { singlet: } & \left(u C \gamma_{5} d\right) s+\left(d C \gamma_{5} s\right) u+\left(s C \gamma_{5} u\right) d
\end{aligned}
$$

$$
\text { common: }\left(d C \gamma_{5} s\right) u+\left(s C \gamma_{5} u\right) d
$$

- flavor-octet operator (Kentucky group)

$$
-2\left(u C \gamma_{5} d\right) s+\left(d C \gamma_{5} s\right) u+\left(s C \gamma_{5} u\right) d
$$

Negative-parity baryon masses

Spectrum of excited state baryons is, in general, hard to compute. It is (much) noisier than the ground state ones. BUT
Lowest-lying negative parity baryons are exceptional. Baryon currents couple to both the positive- and negative-parity states.
$m_{B^{-}}$can be obtained by a simple exp. fitting after parity projection.

$$
\left\langle J_{B} \overline{J_{B}}\right\rangle \sim C \exp \left(-m_{B^{-}} t\right) \quad \text { after zero-mom. and parity projections. }
$$

No need to do 2-pole mass fitting, constrained curve fitting, MEM, or etc.

Lattice parameters and results

- Anisotropic lattice $20^{3} \times 160\left(\beta=6.10, a^{-1}=1.871(14) \mathrm{GeV}\right)$ set by $m_{K^{*}}$ Anisotropy: $a_{s} / a_{t}=4$

$$
V \sim(2.1 \mathrm{fm})^{3}
$$

- Wilson gauge action (quench) Number of configs.:400
- O(a) improved Wilson (clover) quark action

4 kinds of quark masses

$$
m_{\pi}=630 \sim 940 \mathrm{MeV}
$$

smeared source, point sink

- linear chiral extrapolation
$m_{u, d}:$ set by m_{π}
$m_{s}:$ set by m_{K}

PRD68,094505(2003)

Lattice parameters and results

- Anisotropic lattice $20^{3} \times 160\left(\beta=6.10, a^{-1}=1.871(14) \mathrm{GeV}\right)$ set by $m_{K^{*}}$ Anisotropy: $a_{s} / a_{t}=4$

$$
V \sim(2.1 \mathrm{fm})^{3}
$$

- Wilson gauge action (quench) Number of configs.:400
- O(a) improved Wilson (clover) quark action

4 kinds of quark masses

$$
m_{\pi}=630 \sim 940 \mathrm{MeV}
$$

smeared source, point sink

- linear chiral extrapolation

$$
m_{u, d} \text { :set by } m_{\pi}
$$

m_{s} :set by m_{K}
octet Λ, singlet

PRD68,094505(2003)

Lattice parameters and results

- Anisotropic lattice $20^{3} \times 160\left(\beta=6.10, a^{-1}=1.871(14) \mathrm{GeV}\right)$ set by $m_{K^{*}}$

Anisotropy: $a_{s} / a_{t}=4$ $V \sim(2.1 \mathrm{fm})^{3}$

- Wilson gauge action (quench) Number of configs.:400
- O(a) improved Wilson (clover) quark action

4 kinds of quark masses

$$
m_{\pi}=630 \sim 940 \mathrm{MeV}
$$

smeared source, point sink

- linear chiral extrapolation
$m_{u, d}$ set by m_{π}
m_{s} :set by m_{K}
[GeV]

PRD68,094505(2003)

Lattice parameters and results

Australia group

Isotropic lattice (quench):

$$
\begin{aligned}
& 16^{3} \times 32\left(a^{-1} \sim 1.6 \mathrm{GeV}\right) \\
& V \sim(1.9 \mathrm{fm})^{3}
\end{aligned}
$$

$O\left(a^{2}\right)$ improved Wilson gauge ac. 400 configs.
$O(a)$ improved Wilson quark ac. FLIC action
5 quark masses
$m_{\pi} \approx 550 \sim 950 \mathrm{MeV}$
smeared source point sink

Λ^{8} : octet lambda

 Λ^{C} : common* : negative-parity

PRD67,114506(2003)

Lattice parameters and results

octet Λ masses

$16^{3} \times 28\left(a^{-1} \sim 1 \mathrm{GeV}\right)$ quench $V \sim(3.2 \mathrm{fm})^{3}$
80 configs.
overlap fermions
$m_{\pi} \geq 180 \mathrm{MeV}$
constrained curve fitting ground and $1^{\text {st }}$ excited states for both parities

Non-analytic (non-linear) quark mass dependence is seen at $m_{\pi}^{2}<0.2 \mathrm{GeV}^{2}$.

But...

coarse lattice
ghost contamination(?)

Proc. of Lattice2002

Mathur's talk

Summary

- flavor-singlet baryon (our results)

The 3-quark state based on the flavor-singlet has a large mass (1.7~1.8GeV), while the flavor-octet states are relatively close to the experiments.

- "common" baryon (Australia group)

The mass is also far from $\Lambda(1405)$ ($\sim 1.8 \mathrm{GeV}$).

- flavor-octet negative-parity baryon (ours and Australia group)

The mass is similar to (almost degenerate with) the flavor-singlet and common states.

Both results exclude the 3-quark picture of $\Lambda(1405)$.

- flavor-octet negative-parity baryon (Kentucky group)

The mass becomes very light around light pion masses (non-linear behavior), but it might come from systematic errors. (preliminary)

Therefore further analysis of systematic errors must be done.

- Scaling behavior (Need for the continuum limit). Nakamura's talk
- Finite size effects for excited state baryons
- Chiral extrapolation (Linear chiral extrapolation is wrong?)
- Quenching effects (Although it is more "valence-like" picture...)

