Λ(1405) and Negative-Parity Baryons in Lattice QCD

Y.Nemoto (RIKEN-BNL) N.Nakajima (Kochi U.) H.Matsufuru (KEK) H.Suganuma (Tokyo Inst.Tech.)

The $\Lambda(1405)$ Particle

• Mass: ~1406.5 MeV Width: ~50 MeV I=0, J=1/2, Negative-parity

discovered by 1961 (Alston et al. PRL6,698)

 Lightest negative-parity baryon although it has a s-quark. (c.f. N(1535))

 Ordinary 3-quark state?

 Meson-baryon composite state?

3-quark state picture of $\Lambda(1405)$

• Quark Model spin-flavor SU(6) 70-plet rep. $(L = 1^{-})$

SU(3)	J	S=0	S=-1,I=0	S=-1,I=1	S=-2	S=-3
8(2)	1/2	N(1535)	Λ(1670)	Σ(1620)	Ξ(?)	
	3/2	N(1520)	Λ(1690)	Σ(1670)	Ξ(1820)	
8(4)	1/2	N(1650)	Λ(1800)	Σ(1750)	Ξ(?)	
	3/2	N(1700)	Λ(?)	Σ(?)	Ξ(?)	
	5/2	N(1675)	Λ(1830)	Σ(1775)	Ξ(?)	
10(2)	1/2	Δ(1620)		Σ(?)	Ξ(?)	Ω(?)
	3/2	Δ(1700)		Σ(?)	Ξ(?)	Ω(?)
1 (2)	1/2		Λ(1405)			
	3/2		Λ(1520)			

From Reviews of Particle Data

3-quark state picture of $\Lambda(1405)$

 Quark Model Λ(1405): flavor-singlet $J^P = \frac{1}{2}$ **Prediction:** ~1.5 GeV almost degenerate with $\Lambda(1520)$, $J^{P} = \frac{3}{2}$ **Isgur and Karl, PRD18, 4187(1978)** "LS Puzzle" $\Lambda(1520)$ - $\Lambda(1405)$ splitting needs a large LS force. However, other states have very small LS contribution. (c.f. N(1535)-N(1520), $\Lambda(1670)-\Lambda(1690)$)

Naïve quark model fails to reproduce $\Lambda(1405)$.

Meson-Baryon Composite Picture

A(1405) is just below the \overline{KN} threshold (~1440 MeV) and clearly seen in $K^-p \rightarrow \Sigma \pi$ reactions.

- $\overrightarrow{KN} \text{ bound state?}$ (or $\pi \Sigma$ resonance state?)
 - **5-quark state rather than a 3-quark state?**

If so, where is the missing flavor-singlet 3-quark state? Is it a mixed state between two pictures?

Recent Work

• 3-quark picture

1/Nc approachSchat,Goity,Scoccola, PRL88,100202(2002)

States: Constituent quark picture

Nc-1 "core" quarks in the ground state and an (l=1) excited quark

Operators: pick up all possible ops up to 1/Nc

Ex: $S^C \cdot S^C$ term **Core quark spin-spin int. This does not affect the singlet** Λ .

It resolves $\Lambda(1405)$ - $\Lambda(1520)$ splitting and concludes they are LS partners of the flavor-singlet.

• Meson-baryon composite picture

chiral dynamics Lutz's talk, Hyodo's talk

 $\frac{M}{B} = \frac{M}{L(1405)} + \frac{M}{C}$ chiral unitary approach Osaka, Valencia group

Two resonances around 1.4 GeV.

Lower pole strongly couples to $\pi\Sigma$ channels. Flavor-singlet ____ Higher pole strongly couples to KN channels. Flavor-octet, isosinglet

 $\Lambda(1405)$ is a superposition of these two resonances.

What's interesting?

If $\Lambda(1405)$ is 5-quark (like KN) dominant, ...

• $\Lambda(1405)$ in nuclear medium

Pauli blocking effect of the prorton in the $\Lambda(1405)$ changes K^-p scattering amplitudes.

 $\begin{cases} Mass shift of \Lambda(1405) \\ Change of the K^- potential \end{cases}$

Kaon condensation, such as, in neutron stars *K*⁻ **nuclear bound states**

Akaishi's talk, Yamazaki's talk, Dote's talk

It is important to identify the quark content in astrophysics and hyper-nuclear physics, too.

$\Lambda(1405)$ in Lattice QCD

- 3 or 5?
 - All the calculations are based on the 3-quark picture. 5-quark evaluation has not been done yet.
 - Recent work based on the 3-quark picture

(quenched calc.)

- Y.N, N.Nakajima, H.Matsufuru, H.Suganuma PRD68, 094505 (2003) (Our result)
- W.Melnitchouk, S.Bilson-Thompson, F.D.R.Bonnet, J.N.Hedditch, F.X.Lee, D.B.Leinweber, A.G.Williams, J.M.Zanoti, J.B.Zhang (Australia group) PRD67, 114506 (2003)
- •F.X.Lee, S.J.Dong, T.Draper, I.Horvath, K.F.Liu, N.Mathur, J.B.Dong (Kentucky group)

NP(Proc.Suppl.)119, 296(2003) (proc. of Lattice2002)

Basics of Lattice QCD Evaluate path integral for QCD using important sampling $\int [dU][d\psi][d\overline{\psi}] \exp\left\{\sum \left[-\beta S_g + \overline{\psi}(D + m)\psi\right]\right\} = \int [dU] \det(D + m) \exp\left\{\sum \left(-\beta S_g\right)\right\}$ **2-point pion correlation function (Baryons are similar.)** $\left\langle (\overline{\psi}\gamma_5\tau^a\psi)_{,}(\overline{\psi}\gamma_5\tau^b\psi)_{,y} \right\rangle$ $=\frac{1}{Z}\int [dU]\det(D+\underline{m})\exp\left\{\sum(-\beta S_g)\right\}\operatorname{Tr}[\gamma_5\tau^a(D+\underline{m})_{x,y}^{-1}\gamma_5\tau^b(D+\underline{m})_{y,x}^{-1}]$ valence **sea** Leaving out det(D+m) is $\gamma_5 au^a$ $\gamma_5 \tau^b$ quenching.

Quenching effects

• No sea quark

The quench QCD is more "valence-like" than full QCD.

It is more suitable to study whether $\Lambda(1405)$ is 3-q dominant or 5-q dominant than full QCD.

$\Lambda(1405)$ currents

flavor-singlet operator

 $(uC\gamma_5 d)s + (dC\gamma_5 s)u + (sC\gamma_5 u)d \qquad C: \text{ charge conjugate matrix}$ $\begin{pmatrix} \text{c.f. nucleon operators (proton)} \\ (uC\gamma_5 d)u \text{ and } (uCd)\gamma_5 u & 2 \text{ linear independent ops.} \\ \bullet \text{``common'' operator (Australia group)} \end{pmatrix}$

octet:
$$-2(uC\gamma_5 d)s + (dC\gamma_5 s)u + (sC\gamma_5 u)d$$

singlet: $(uC\gamma_5 d)s + (dC\gamma_5 s)u + (sC\gamma_5 u)d$

common: $(dC\gamma_5 s)u + (sC\gamma_5 u)d$

• flavor-octet operator (Kentucky group)

 $-2(uC\gamma_5 d)s + (dC\gamma_5 s)u + (sC\gamma_5 u)d$

Negative-parity baryon masses

Spectrum of excited state baryons is, in general, hard to compute. It is (much) noisier than the ground state ones. BUT

Lowest-lying negative parity baryons are exceptional. Baryon currents couple to both the positive- and negative-parity states.

 m_{B^-} can be obtained by a simple exp. fitting after parity projection.

 $\langle J_B \overline{J_B} \rangle \sim C \exp(-m_{B^-} t)$ after zero-mom. and parity projections.

No need to do 2-pole mass fitting, constrained curve fitting, MEM, or etc.

• Anisotropic lattice $20^3 \times 160(\beta = 6.10, a^{-1} = 1.871(14) \text{GeV})$ set by m_{K^*} Anisotropy: $a_s / a_t = 4$

 $V \sim (2.1 \text{fm})^3$

- Wilson gauge action (quench) Number of configs.:400
- O(a) improved Wilson (clover) quark action

4 kinds of quark masses $m_{\pi} = 630 \sim 940 \text{ MeV}$

smeared source, point sink

• linear chiral extrapolation

 $m_{u,d}$:set by m_{π} m_s :set by m_K

PRD68,094505(2003)

- Anisotropic lattice $20^3 \times 160(\beta = 6.10, a^{-1} = 1.871(14) \text{GeV})$ set by m_{K^*} Anisotropy: $a_s / a_t = 4$ $V \sim (2.1 \text{fm})^3$ **octet A, singlet**
- Wilson gauge action (quench) Number of configs.:400
- O(a) improved Wilson (clover) quark action

4 kinds of quark masses $m_{\pi} = 630 \sim 940 \text{ MeV}$

smeared source, point sink

• linear chiral extrapolation

 $m_{u,d}$:set by m_{π} m_s :set by m_K

PRD68,094505(2003)

- Anisotropic lattice $20^3 \times 160(\beta = 6.10, a^{-1} = 1.871(14) \text{GeV})$ set by m_{K^*} Anisotropy: $a_s / a_t = 4$ [GeV] $V \sim (2.1 \text{fm})^3$ 2
- Wilson gauge action (quench) Number of configs.:400
- O(a) improved Wilson (clover) quark action

4 kinds of quark masses $m_{\pi} = 630 \sim 940 \text{ MeV}$

smeared source, point sink

• linear chiral extrapolation

 $m_{u,d}$: set by m_{π} m_s : set by m_K

Lattice parameters and results Australia group

Isotropic lattice (quench): 2.8 $16^3 \times 32(a^{-1} \sim 1.6 \text{ GeV})$ ΔA ă۵ ∎Ā ∎Ž ₽Ţ $V \sim (1.9 \,{\rm fm})^3$ 2.4 $O(a^2)$ improved Wilson gauge ac. Ŧ ₽Ţ 400 configs. 2 O(a) improved Wilson quark ac. 1810 **FLIC** action •0 N * 1670⁻ 5 quark masses 1.6 -* 1600⁺ •0 $m_{\pi} \approx 550 \sim 950 \text{ MeV}$ + 1405-• $\circ \Lambda_1$ smeared source 1.2 Λ^8 *1116+ point sink 0.8 0.2 0.4 0.8 0.6 0 m_{π}^2 (GeV²) Λ^8 : octet lambda

 Λ^{8} : octet lambda Λ^{C} : common

* : negative-parity

PRD67,114506(2003)

octet Λ masses

 $16^{3} \times 28(a^{-1} \sim 1 \text{GeV})$ quench $V \sim (3.2 \text{fm})^{3}$ 80 configs.

overlap fermions $m_{\pi} \ge 180 \text{MeV}$ constrained curve fitting ground and 1st excited states for both parities

Non-analytic (non-linear) quark mass dependence is seen at $m_{\pi}^2 < 0.2 \text{GeV}^2$.

But... coarse lattice ghost contamination(?) Mathur's talk

Kentucky group

• flavor-singlet baryon (our results)

The 3-quark state based on the flavor-singlet has a large mass (1.7~1.8GeV), while the flavor-octet states are relatively close to the experiments.

• "common" baryon (Australia group)

The mass is also far from $\Lambda(1405)~$ (~1.8GeV).

• flavor-octet negative-parity baryon (ours and Australia group)

The mass is similar to (almost degenerate with) the flavor-singlet and common states.

Both results exclude the 3-quark picture of $\Lambda(1405)$.

• flavor-octet negative-parity baryon (Kentucky group)

The mass becomes very light around light pion masses (non-linear behavior), but it might come from systematic errors. (preliminary)

Therefore further analysis of systematic errors must be done.

- Scaling behavior (Need for the continuum limit). Nakamura's talk
- Finite size effects for excited state baryons
- Chiral extrapolation (Linear chiral extrapolation is wrong?)
- Quenching effects (Although it is more "valence-like" picture...)