Dense \overline{K} nuclei and their excited states

A.Doté (KEK), Y.Akaishi (KEK), T.Yamazaki (RIKEN)

- 1. Introduction
- 2. New framework of Antisymmetrized Molecular Dynamics
 - K⁻p-K⁰n mixing
 - J & T projections
- 3. Ground state of ppnK⁻ , pppK⁻ , pppnK⁻ , ⁶BeK⁻ , ⁹BK⁻ and ¹¹CK⁻
- 4. Excited states of ppnK⁻ and ¹¹CK⁻
- 5. Summary

nucl-th/0309062

Multi-quark hadrons, four, five and more?, '04.02.19 at YITP

Introduction

$$J \& T \text{ projections (VBP)}$$

$$|\Phi^{\pm}\rangle \longrightarrow |P_{MK}^{J}P_{T_{2}T_{2}}^{T}, \Phi^{\pm}\rangle : \text{Eigen state of angular momentum J}_{and isospin T}$$

$$|P_{MK}^{J}P_{T_{2}T_{2}}^{T}, \Phi^{\pm}\rangle = \int d\Omega_{Ang} D_{MK}^{J*}(\Omega_{Ang}) \hat{R}_{Ang}(\Omega_{Ang}) \times \int d\Omega_{iso} D_{T_{2}T_{2}}^{T*}(\Omega_{iso}) \hat{R}_{iso}(\Omega_{iso}) |\Phi^{\pm}\rangle$$

$$J \text{ projection} \qquad \hat{R}_{Ang}(\Omega) = \exp[-i\alpha \hat{J}_{z}] \exp[-i\beta \hat{J}_{y}] \exp[-i\gamma \hat{J}_{z}] \times \hat{R}_{iso}(\Omega) = \exp[-i\alpha \hat{T}_{z}] \exp[-i\beta \hat{T}_{y}] \exp[-i\gamma \hat{T}_{z}]$$

$$Calculate various expectation values with |P_{MK}^{J}P_{T_{2}T_{2}}^{T}, \Phi^{\pm}\rangle.$$

Formalism

- 1. Hamiltonian $\hat{H} = \hat{T} + \hat{V}_{NN} + \hat{V}_{KN} + \hat{V}_{Coulomb} \hat{T}_{G}$
- 2. Variational parameters $\{X_{\alpha}^{i}\} = \{C_{\alpha}^{i}, \mathbf{Z}_{\alpha}^{i}, \gamma_{\alpha}^{i}, C_{\alpha}^{K}, \mathbf{Z}_{\alpha}^{K}, \gamma_{\alpha}^{K}\}$ are determined by Frictional cooling eq. with constraint.
- 3. G-matrix method \Longrightarrow Effective interaction \hat{V}_{NN} , \hat{V}_{KN} bare NN int = Tamagaki potential (OPEG) bare KN int = AY potential

given density and starting energy of \overline{K} \rightarrow G-matrix Repeat until getting consistency

AMD calculation → density and starting energy of K

Binding energy of K⁻ and Decay-width

results and the G-matrix used in the calculation

Number of nucleons near K⁻ meson

Excited state of ppnK⁻

Ground and Excited states of ¹¹CK⁻

Summary

• We have improved AMD so that we can treat $K^{-}p/\overline{K}^{0}n$ mixing and perform J & T projections.

• <u>Results:</u>

	E(K)	width	Max <i>p</i>	Rrms
	[MeV]	[MeV]	[fm^-3]	[fm]
ppnK-	110.3	21.2	1.50	0.72
pppK-	96.7	12.5	1.56	0.81
pppnK-	105.0	25.9	1.29	0.97
6BeK-	104.2	33.3	0.91	1.17
9BK-	118.5	33.0	0.71	1.45
11CK-	117.4	46.0	0.81	1.48

In the ground state of kaonic nuclei, K^{-} is deeply bound by ~100 MeV and forms highly dense state.

Saturation of E(K) is related to the number of nucleons with which a K^- can interact.

• Excited states

- •ppnK⁻ J^{π}=3/2⁻, T=1 : Isobaric analog state of the ground state of pppK⁻ 38 MeV above the ground state, Γ is very large to be 128 MeV.
- •¹¹CK⁻ Two excited states as well as the ground state are below the $\Sigma \pi$ threshold.
 - $J^{\pi}=1/2^+$, T=1 : shell-like structure
 - $J^{\pi}=1/2^{+}$, T=0 : cluster-like structure

 4 He(T=0) + ppnK⁻(T=0) + 4 He(T=0) configuration.