

## **A new paradigm in Nuclear Physics**



Yoshinori AKAISHI Akinobu DOTE Toshimitsu YAMAZAKI

Institute of Particle and Nuclear Studies, KEK

## Few-Body KN Systems



## Kaonic Hydrogen X-Rays



P.M. Bird et al., Nucl. Phys. A404 (1983) 482.



Downward shift

 $(-323 \pm 63 \pm 11) + i(407 \pm 208 \pm 100) \text{ eV}$ 

#### K<sup>-</sup>p atom

#### DEAR @ DA DA

M. Iwasaki et al., Phys. Rev. Lett. 78 (1997) 3067.T.M. Ito et al., Phys. Rev. C 58 (1998) 2366.



# **K**N interaction

$$V_{KN,\pi\Sigma}^{T}(r) = V_{D}^{T} \exp(-(r/0.66)^{2})$$

$$V_{KN,\pi\Sigma}^{T}(r) = V_{C_{1}}^{T} \exp(-(r/0.66)^{2})$$

$$V_{KN,\pi\Delta}^{T}(r) = V_{C_{2}}^{T} \exp(-(r/0.66)^{2})$$

$$V_{\pi\Sigma}^{T}(r) = V_{\pi\Delta}^{T} = 0$$

$$V_{D}^{T=1} = -62 \text{ MeV}$$

$$V_{C_{1}}^{T=1} = -285 \text{ MeV}$$

$$V_{C_{1}}^{T=1} = -285 \text{ MeV}$$

$$V_{C_{2}}^{T=1} = -285 \text{ MeV}$$

$$Method (1981)$$

$$a_{T}^{T=1} = -0.37 + i 0.60 \text{ fm}$$

$$a_{K_{2}}^{T=1} = -0.37 + i 0.60 \text{ fm}$$

$$a_{K_{2}}^{T=1} = -(-0.78 \pm 0.15 \pm 0.03) + i (0.49 \pm 0.25 \pm 0.12) \text{ fm}$$

## **A Chiral Constituent-Quark Model**

L.Ya. Glozman, W. Plessas, K. Varga & R.F. Wagenbrunn, Phys. Rev. D <u>58</u> (1998) 094030.



H. Suganuma et al.

*M*(3Q,1/2<sup>-</sup>) ≈ 1.7 GeV

## Jülich KN Quasi-potential

A. Müller-Groeling, K. Holinde & J. Speth, Nucl. Phys. A513 (1990) 557.





## **Optical potential**

$$U^{\text{opt}}(r) = \frac{V_0 + iW_0}{1 + \exp\{(r - R_0) / a_s\}}, \quad V_0 + iW_0 = \frac{1}{4}(g^{T=0} + 3g^{T=1})\rho_0$$



J. Schaffner-Bielich, V. Koch & M. Effenberger, Nucl. Phys. <u>A669</u> (2000) 153. A. Ramos & E. Oset, Nucl. Phys. <u>A671</u> (2000) 481.

A. Cieply, E Friedman, A. Gal & J. Mares, Nucl. Phys. <u>A696</u> (2001) 173.



Y. Akaishi & T. Yamazaki, Phys. Rev. C<u>65</u> (2002) 044005. N. Kaiser, P.B. Siegel & W. Weise, Nucl. Phys. <u>A594</u> (1995) 325.

#### Chiral SU(3) Dynamics

N. Kaiser, P.B. Siegel and W. Weise, Nucl. Phys. A594 (1995) 325.
 T. Waas, N. Kaiser and W. Weise, Phys. Lett. B365 (1995) 12.



## Chiral SU(3) Dynamics

T. Waas, N. Kaiser and W. Weise, Phys. Lett. B379 (1996) 34.



## Variational calculation of ppK-

Hamiltonian

$$H = -\hbar^{2} \left[ \sum_{(ij)} \frac{1}{2} \left( \frac{1}{M_{i}} + \frac{1}{M_{j}} \right) \left\{ \frac{\partial^{2}}{\partial r_{ij}^{2}} + \frac{2}{r_{ij}} \frac{\partial}{\partial r_{ij}} \right\} + \sum_{k} \frac{1}{M_{k}} \cos \theta_{(ijk)} \frac{\partial}{\partial r_{ik}} \frac{\partial}{\partial r_{kj}} \right] + V_{pp}(r_{12}) + V_{pK}(r_{23}) + V_{pK}(r_{31})$$

Variational wave function

 $\Psi = f(r_{12})g(r_{23})g(r_{31})$ 

Euler equation

 $\delta \langle \Psi | H - \lambda | \Psi \rangle = 0$ 

$$\left[-\frac{\hbar^2}{2\mu_{\rm pK}}\frac{d^2}{dr^2}+V_{\rm pK}(r)+U_{\rm pK}^{\rm av}(r)\right]r\tilde{g}(r)=\lambda\,r\tilde{g}(r)$$



Two-body wave function in the system  $\overline{g}(r) = \sqrt{S(r)}g(r)$ Off-shell transformation  $S(r) = \int d\vec{\xi} |g(r_{31})f(r_{12})|^2_{r_{23}=r}$ 

## Nuclear KNN bound states

$$K^- \otimes nn$$
 $2\{v^{T=1}\}$  $S=0$  $T=3/2$ Unbound

K<sup>-</sup>  $\otimes$  d $2\left\{\frac{1}{4}v^{T=0} + \frac{3}{4}v^{T=1}\right\}$ S = 1T = 1/2Above the  $\Lambda^*$ +n threshold

$$\begin{bmatrix} \mathbf{K}^{-} \otimes \mathbf{pp} \\ \mathbf{S} = \mathbf{0} \\ T = 1/2 \end{bmatrix} = 2 \left\{ \frac{3}{4} \mathbf{v}^{T=0} + \frac{1}{4} \mathbf{v}^{T=1} \right\}$$

$$\begin{bmatrix} V_{NN}({}^{1}S_{0}) \rightarrow V_{NN}({}^{3}S_{1}) & -64 \text{ MeV} & 69 \text{ MeV} \\ M_{N} \rightarrow 1.5 M_{N} & -76 \text{ MeV} & 75 \text{ MeV} \\ \text{Both} & -98 \text{ MeV} & 82 \text{ MeV} \end{bmatrix}$$



T. Yamazaki & Y. Akaishi, Phys. Lett. <u>B535</u> (2002) 70.





## <u>On the Λ(1405)</u>









$$\begin{split} \left| \frac{d^{2}\sigma}{dE_{\pi}d\Omega_{\pi}} \right|_{\text{fwd}} &= \alpha(k_{\pi}) \frac{d^{2}\sigma_{\Lambda^{*}}^{\text{elem}}}{dE_{\pi}d\Omega_{\pi}^{(0)}} \right|_{\text{fwd}} \frac{1}{\left(\bar{E} - E_{\Lambda^{*}p}\right)^{2} + \frac{1}{4}\Gamma_{\Lambda^{*}}^{2}} |V_{\text{soft}}|^{2} \\ &\times \left(-\frac{1}{\pi}\right) \text{Im} \left[ \iint d\vec{r} d\vec{r}^{*} \vec{f}^{*} (\vec{r}) \left\langle \vec{r} \left| \frac{1}{E - (H_{K-(pp)}) + i\epsilon} \right| \vec{r}^{*} \right\rangle \vec{f} (\vec{r}^{*}) \right] \\ &\alpha(k_{\pi}) = \left\{ 1 - \frac{E_{\pi}^{(0)}}{E_{\Lambda^{*}}^{(0)}} \frac{k_{\pi}}{k_{\pi}^{(0)}} \right\} \frac{k_{\pi}}{k_{\pi}^{(0)}} \\ &\tilde{t}(\vec{r}) = \exp(i2 \frac{M_{p}}{M_{\Lambda^{*}} + M_{p}} (\vec{k}_{K} - \vec{k}_{\pi})\vec{r}) \frac{1}{\sqrt{\rho_{\Lambda^{*}}(0)}} 2^{3} \psi_{(pp)}(2\vec{r}) \psi_{b}(2\vec{r})} \\ &\tilde{E} = E_{K} - E_{\pi} + M_{\pi}c^{2} - M_{\Lambda}c^{2} - B(n) - \frac{\hbar^{2}}{2(M_{\Lambda^{*}} + M_{p})} (k_{K} - k_{\pi})^{2} \\ &E = E_{K} - E_{\pi} - m_{K}c^{2} - \frac{\hbar^{2}}{2(m_{K} + M_{p})} (k_{K} - k_{\pi})^{2} \\ &V_{\text{soft}} \equiv \left\langle \Lambda^{*} \left| V_{\bar{K}N} \right| \Lambda^{*} \right\rangle = -138 - i20 \text{ MeV}, \quad \rho_{\Lambda^{*}}(0) = 0.45 \text{ fm}^{-3} \end{split}$$

#### Production of A(1405) in bubble chamber

 $K^{-} + p \rightarrow \Lambda(1405) + (\pi\pi)^{0}$ 

p<sub>K</sub> = 1.15 GeV/c

GeV/c

M.H. Alston, L.W. Alvarez, P. Eberhard, M.L. Good, W. Graziano, H.K. Ticho, & S.G. Wojcicki, Phys. Rev. Lett. 6 (1961) 698.

$$K^{-} + p \rightarrow \Lambda(1405) + \pi^{0}$$
  $p_{K} = 0.76 \sim 1.15$ 

 $\sigma = 0.1 \sim 0.2 \, \text{mb}$ 

P. Bastien, M. Ferro-Luzzi & A.H. Rosenfeld, Phys. Rev. Lett. 6 (1961) 702.



D(K, IT) "Kpp" ~ 6,ub/sr Exp. is feasible.





-400

 $R_{\rm core}$  fm

1.4

1.2

Т

1.6

-120

1.0

Nuclear
$$\stackrel{3}{\kappa}H$$
bound state $[K \otimes {}^{3}He + \overline{K} \otimes {}^{3}H]$  $3\{\frac{1}{6}v^{T=0} + \frac{5}{6}v^{T=1}\}$  $3\{\frac{1}{6}v^{T=0} + \frac{5}{6}v^{T=1}\}$  $T=1$  $E_{0s} = -21$  MeV $\Gamma_{0s} = 95$  MeVrms r.=1.20 fm $3\{\frac{1}{2}v^{T=0} + \frac{1}{2}v^{T=1}\}$  $T=0$  $E_{0s} = -108$  MeV $\Gamma_{0s} = 20$  MeVNarrow !rms r.=0.97 fm

M. Iwasaki, K. Itahashi, H. Outa, T. Yamazaki





ppnK<sup>-</sup>(T=0) ppnK<sup>-</sup>(T=1)



# K<sup>-</sup>ppn

$$v_{\overline{\mathrm{K}}\mathrm{N}} \to f \, v_{\overline{\mathrm{K}}\mathrm{N}}$$

ſ

(unit in MeV)

| f    | Λ(1405) fit | K⁻ppn | Εκ        | <b>B</b> <sub>Kppn</sub> | $\varGamma^{\pi}$ | ħο |
|------|-------------|-------|-----------|--------------------------|-------------------|----|
| 1.00 | S           | S     | -108 -i10 | 116                      | 20                | 44 |
| 1.00 | K-G         | K-G   | -119 -i10 | 127                      | 20                | 44 |
| 1.31 | S           | S     | -164 -i 5 | 172                      | 9                 | 50 |
| 1.17 | K-G         | K-G   | -164 -i 6 | 172                      | 11                | 46 |

S : Schroedinger K-G : Klein-Gordon

 $\Gamma_{\rm KNN}$ = 12 MeV

$$\hbar\omega = \frac{\hbar^2}{M}a$$

$$\rho(\mathbf{r}) = \rho(0) \exp(-\frac{3}{2}ar^2)$$

$$\overline{\rho} = \sqrt{\frac{1}{8}}\rho(\mathbf{0}), \quad \rho(0) = 3\left(\frac{3a}{2\pi}\right)^{3/2}$$

M. Iwasaki et al. 
$$B_{Kppn}$$
=173 $\pm$ 4 MeV  
 $\Gamma$  < 25 MeV

*M* ~ 3137 MeV/c<sup>2</sup>



# <sup>8</sup>Be





## Dense & Cold

### AMD calculation by Dote et al.



## **Phase Diagram**





## **Spectral Function**



## **Spectral Function**









## **Concluding Remarks**

Nuclear K bound state

K behaves as a "contractor". Mini strange matter

A new means to investigate Hadron dynamics in dense&cold matter

> Chiral restoration? Color superconductivity? Kaon condensation? Strange hadronic/quark matter?

Few-body K nuclear systems would provide experimental data of fundamental importance for strangeness and hadron physics.