Pentaquark baryons from lattice QCD

Shoichi Sasaki
Univ. of Tokyo

S. Sasaki, hep-lat/0310014

Discovery of Exotic S=+1 Baryon

T. Nakano et al.

Phys.Rev.Lett. 91 (2003) 012002
Laser-Electron Photon facility (LEPS)@Spring-8

$$
\begin{aligned}
& \text { Mass }=1540 \pm 10 \mathrm{MeV} \\
& \text { Width } \leq 25 \mathrm{MeV}
\end{aligned}
$$

$$
\gamma n \rightarrow \Theta^{+} K^{-} \rightarrow n K^{+} K^{-}
$$

- Positive Strangness (uudd \bar{s})
\square Very narrow width
\square Spin and Parity are undetermined.

Confirmation from other experiments

DIANAIITEP (hep-ex/0304040)
Mass $=1539 \pm 2 \mathrm{MeV}$,
Width < 9 MeV
3
CLAS/JLAB (hep-ex/0307018)
Mass $=1542 \pm 5 \mathrm{MeV}$,
Width < 21 MeV
SAPHIR/ELSA (hep-ex/0307083)
Mass $=1540 \pm 4 \mathrm{MeV}$,
Width < 25 MeV
HERMES/DESY (hep-ex/0312044)
Mass $=1528 \pm 2.6 \mathrm{MeV}$,
Width < $19 \pm 5 \mathrm{MeV}$
But, spin and parity are still undetermined.
The existence of the Θ has been established.

Exotic anti-decuplet baryons

A narrow exotic $\mathrm{S}=+1$ baryon $\Theta^{+}\left(\mathrm{Z}^{+}\right)$predicted by the chiral quark-soliton model

Diakonov et al. Z. Phys. A359 (97) 305
"Bound state" of octet baryons with octet mesons

$$
8_{f} \times 8_{f}=1_{f}+8_{f}+8_{f}+10_{f}+10_{f}^{*}+27_{f}
$$

Exotic $S=+1$ state in the $10^{*}(I=0)$ and the $27(I=1)$
\square Exotic: $\mathrm{S}=+1$ in the $10 *(\mathrm{I}=0)$

- Low mass: 1530 MeV

Narrow width: <15 MeV
■ $J^{\mathrm{P}}=1 / 2^{+}$

What can lattice QCD say?

The discovery of the $\Theta^{+}(1540)$ triggered many model predictions.

What is spin, parity and isospin of the $\Theta^{+}(1540)$?
Existence of the charm (bottom) pentaquark state

$$
(u u d d \bar{s}) \rightarrow(u u d d \bar{c}) \text { or }(u u d d \bar{b})
$$

Maximal knowledge about those matters is essential to understanding the structure of the pentaquark state.

Lattice QCD can answer both of them before experimental efforts

Lattice studies of N* spectrum (1)

Lee-Leinweber
D $\chi 34$ action hep-lat/9809095, D234 action, hep-lat/0011060, 0110164.

Sasaki-Blum-Ohta (RIKEN-BNL)

Domain wall fermion, hep-lat/9909093, Phys. Rev. D65 (2002) 074503.

Richards et al (UKQCD-QCDSF-LHPC)
Clover fermion, hep-lat/001 1025, Phys. Lett. B532 (2002) 63.

Melnitchouk et al (Adelaide)
Fat-link clover fermion, hep-lat/0202022, Phys. Rev. D67 (2003) 114506.Nemoto-Nakajima-Matsufuru-Suganuma
Clover fermion \& anisotropic action, hep-lat/0204014, Phys.Rev.D68 (2003) 094505.
Q Bern-Graz-Regensburg Collaboration
Chirally improved fermion, hep-ph/0307073

Lattice studies of ${ }^{*}$ spectrum (2)

Large mass splitting between N and N^{*} is well reproduced.

Some difficulty of lattice study?

A simple minded study of pentaquark state with

$$
\Theta^{+} \sim \frac{\varepsilon_{a b c} d_{a} d_{b} u_{c}}{\mathrm{~N}} \times \frac{\bar{S}_{e} u_{e}}{\mathrm{~K}}
$$

How can we distinguish between the mass of the pentaquark state and

the total energy of the interacting KN two-body system
The 2-pt function $\langle\Theta(t) \bar{\Theta}(0)\rangle$ should be dominated by the latter if $M_{\Theta}>M_{N}+M_{K}$

Some difficulty of lattice study?

A simple minded study of pentaquark state with

$$
\Theta^{+} \sim \frac{\varepsilon_{a b c} d_{a} d_{b} u_{c}}{\mathrm{~N}} \times \frac{\bar{S}_{e} u_{e}}{\mathrm{~K}}
$$

How can we distinguish between the mass of the pentaquark state and

the total energy of the interacting KN two-body system
Choose a specific operator with as little overlap
with the KN scattering state as possible
$\left.\left|\left\langle\Theta^{+}\right| \mathcal{O}\right| 0\right\rangle|\gg|\langle K+N| \mathcal{O}|0\rangle \mid$

Exotic pentaquark operator (1)

An exotic description of $\mathrm{S}=+1$ state $(u u d d \bar{s})$ can be described by

$$
\Theta^{+} \sim(\bar{s})_{q q}(\bar{s})_{q q} \bar{S}
$$

using the flavor antitriplet diquark $\left(\bar{q}_{i}\right)_{q q}=\varepsilon_{i j k} q_{j} q_{k}$

$$
\text { flavor: } 3_{f}^{*} \times 3_{f}^{*} \times 3_{f}^{*}=1_{f}+8_{f}+8_{f}+10_{f}^{*}
$$

For the color singlet state, above diquark should be in the color antitriplet as well

$$
\text { color: } 3_{c}^{*} \times 3_{c}^{*} \times 3_{c}^{*}=1_{c}+8_{c}+8_{c}+10_{c}^{*}
$$

Recently, many authors remarked importance of exotic descriptions as diquark-diquark-antiquark

Exotic pentaquark operator (2)

The isospin zero and color 3^{*} diquark field can be defined by

$$
\Phi_{\Gamma}^{a}(x)=\varepsilon_{i j} \varepsilon_{a b c} q_{i, b}^{T}(x) C \Gamma q_{j, c}(x)
$$

where Γ is any of the 16 possible Dirac γ-matrices.

Accounting for both color and flavor antisymmetries,
Γs are restricted within $1, \gamma_{5}$ and $\gamma_{5} \gamma_{\mu}$
which satisfy the relation $(C \Gamma)^{\top}=-C \Gamma$

Three types of diquark: $0^{+}\left(\gamma_{5}\right), 0^{-}(1), 1^{-}\left(\gamma_{5} \gamma_{\mu}\right)$ can be allowed.

Exotic pentaquark operator (3)

Q The color singlet state can be constructed by the color antisymmetric part of di-diquark with a strange anti-quark as

$$
\varepsilon_{a b c} \Phi_{\Gamma}^{a}(x) \Phi_{\Gamma^{\prime}}^{b}(x) C \bar{s}_{c}^{T}(x) \text { for } \Gamma \neq \Gamma^{\prime}
$$

Q Three types of exotic pentaquark operators are yielded

$$
\left.\begin{array}{l}
\Theta_{+}(x)=\varepsilon_{a b c} \Phi_{1}^{a}(x) \Phi_{\gamma_{5}}^{b}(x) C \bar{s}_{c}^{T}(x) \\
\Theta_{1}^{\mu}(x)=\varepsilon_{a b c} \Phi_{1}^{a}(x) \Phi_{\gamma_{5} \gamma_{\mu}}^{b}(x) C \bar{S}_{c}^{T}(x) \\
\Theta_{2}^{\mu}(x)=\varepsilon_{a b c} \Phi_{\gamma_{5}}^{a}(x) \Phi_{\gamma_{5} \gamma_{\mu}}^{b}(x) C \bar{s}_{c}^{T}(x)
\end{array}\right\} \quad J=\frac{1}{2} \text { and } \frac{3}{2}
$$

Exotic pentaquark operator (4)

4. The parity of the spin-1/2, isosinglet Θ operator is positive

$$
\begin{aligned}
\Theta_{+}=\varepsilon_{a b c} \varepsilon_{a e f} \varepsilon_{b g h}\left(u_{e}^{T} C d_{f}\right)\left(u_{g}^{T} C \gamma_{5} d_{h}\right) C \bar{s}_{c}^{T} \\
0^{-} \times 0^{+} \times 1 / 2^{-}=1 / 2^{+}
\end{aligned}
$$

Multiplying the left hand side of Θ_{+}by γ_{5}
$\Theta_{-}=\gamma_{5} \Theta_{+}$

$$
=\varepsilon_{a b c} \varepsilon_{a e f} \varepsilon_{b g h}\left(u_{e}^{T} C d_{f}\right)\left(u_{g}^{T} C \gamma_{5} d_{h}\right) \gamma_{5} C \bar{s}_{c}^{T}
$$

It turns out that $\left\langle\Theta_{-}(t) \bar{\Theta}_{-}(0)\right\rangle=-\gamma_{5}\left\langle\Theta_{+}(t) \bar{\Theta}_{+}(0)\right\rangle \gamma_{5}$
For details of the parity projection, see Sasaki-Blum-Ohta PRD65 (2002) 074503.

Details of the simulation

Gauge: Standard plaquette action

$$
\beta=6.2, \mathrm{a}^{-1} \approx 3 \mathrm{GeV}
$$

lattice sizes $32^{3} \times 48, V \approx(2.2 \mathrm{fm})^{3}$, statistics 135 configs

Fermion: Wilson fermions
5 quark masses ($M_{\pi}>600 \mathrm{MeV}$) with charm mass $\mathrm{K}=0.1520,0.1515,0.1506,0.1489,0.1480,0.1360$ Point source - Point sink ($\mathrm{t}_{\text {src }}=6$)
P.B.C. + A.P.B.C. for the temporal direction

Basic results

A lattice scale is set by the gluonic scale: $a=0.0677 \mathrm{fm},\left(a^{-1}=2.94 \mathrm{GeV}\right)$
\checkmark "strange": at $\mathrm{K}=0.1515 \quad \mathrm{aM}_{\text {vector }}=0.335(4) \sim 0.98 \mathrm{GeV} \sim \phi(1020)$
\checkmark "charm": at $\mathrm{K}=0.1360 \quad \mathrm{aM}_{\text {vector }}=1.031$ (2) $\sim 3.04 \mathrm{GeV} \sim \mathrm{J} / \psi(3097)$
\checkmark chiral extrapolated values:

$\square \mathrm{aM}_{\rho}=0.235(6)$	$\sim 0.69 \mathrm{GeV}$	11\%	(0.77 GeV)
$\square \mathrm{aM}_{\mathrm{N}}=0.361$ (10)	$\sim 1.06 \mathrm{GeV}$	12\%	(0.94 GeV)
$a \mathrm{am}_{\mathrm{K}}=0.179(2)$	$\sim 0.53 \mathrm{GeV}$	8\%	(0.49 GeV)
- $\mathrm{aM}_{\Sigma}=0.440$ (8)	$\sim 1.30 \mathrm{GeV}$	8\%	(1.20 GeV)
- $\mathrm{aM}_{\equiv}=0.486$ (7)	$\sim 1.43 \mathrm{GeV}$	8\%	(1.32 GeV)
- $\mathrm{aM}_{\mathrm{D}}=0.641$ (2)	$\sim 1.88 \mathrm{GeV}$	<1\%	(1.89 GeV)
$\square \mathrm{aM}_{\Sigma_{\mathrm{c}}}=0.842$ (13)	$\sim 2.48 \mathrm{GeV}$	<1\%	(2.46 GeV)

(uudd ${ }^{\text {bars }}$) state with positive parity

$\Theta\left(1 / 2^{+}\right) \rightarrow(K N)_{P \text {-wave }} \quad \sqrt{M_{N}^{2}+p_{\text {min }}^{2}}+\sqrt{M_{k}^{2}+p_{\text {min }}^{2}}\left(\overrightarrow{\bar{p}_{\text {min }}}=2 \pi / L\right)$

$$
M_{\mathrm{eff}}(t)=\ln \{G(t) / G(t+1)\} \propto M \quad\left(G(t) \propto e^{-M t}\right)
$$

(uudd ${ }^{\text {bars }}$) state with positive parity

$\Theta\left(1 / 2^{+}\right) \rightarrow(K N)_{\text {P-wave }} \quad \sqrt{M_{N}^{2}+p_{\text {min }}^{2}}+\sqrt{M_{k}^{2}+p_{\text {min }}^{2}}\left(\mid \vec{p}_{\text {min }}=2 \pi / L\right)$

No clear signal for the KN scattering state An expected feature: $\left.\left|\left\langle\Theta^{+}\right| \mathcal{O}\right| 0\right\rangle|\gg|\langle K+N| \mathcal{O}|0\rangle \mid$

(uudd ${ }^{\text {bars }}$) state with negative parity

$$
\Theta\left(1 / 2^{-}\right) \rightarrow(\mathrm{KN})_{\text {s-wave }}
$$

Two distinct plateaus ?

(uudd ${ }^{\operatorname{arc} \mathrm{C}}$) state with negative parity

(uudds) \rightarrow (uuddc) pentaquark state !!

No clear signal for the DN scattering state An expected feature: $\left.\left|\left\langle\Theta_{c}^{0}\right| \mathcal{O}\right| 0\right\rangle|\gg|\langle D+N| \mathcal{O}|0\rangle \mid$

the charm-pentaquark lies much higher than the DN threshold

the lowest pentaquark state has negative parity

Summary

We study the mass spectrum of pentaquark states in quenched lattice QCD with the newly proposed interpolating operator.

Formulate and classify the exotic pentaquark interpolating operators.
$\checkmark 3_{c}{ }^{*} \times 3_{c}{ }^{*}$ diquark cluster with anti-quark $\# \rightarrow$ three types
\checkmark Can study spin-3/2 states of the pentaquark as well as spin-1/2 states.
\checkmark Couple weakly to the KN two-body system.

Several important observations to understand the structure of $\Theta+(1540)$
\checkmark The J^{P} assignment of the lowest isosinglet Θ state is most likely $1 / 2^{-}$
\checkmark The uudd ${ }^{\text {bar }}$ c pentaquark with $J^{P}=1 / 2$ - lies much higher than the DN threshold. (3.5 GeV).

Exclude the possibility of the charm analog Θ state like a very narrow resonance or a bound state.

Other related studies

Other lattice study
Csikor, Fodar, Katz, Kovacs, hep-lat/0309090.v2

- Other operator:
\square

$$
\Theta \sim \varepsilon_{a b c}\left(u_{a}^{T} C \gamma_{5} d_{b}\right)\left\{u_{e} \bar{s}_{e} \gamma_{5} d_{c}-(u \leftrightarrow d)\right\}
$$

QCD sum rules

- Sugiyama, Doi, Oka, hep-ph/0309271
- Same exotic diquark-diquark-antiquark operator
$m_{0}^{2}=\frac{\left\langle\bar{s} g_{s} \sigma \cdot G s\right\rangle}{\langle\bar{s} s\rangle}>0.4 \mathrm{GeV}^{2} \quad\left(m_{0}^{2}=0.8 \pm 0.2 \mathrm{GeV}^{2}\right)$
the parity of the Θ^{+}is most likely negative

If the Θ^{+}really exists, its parity is most likely negative.

But, this conclusion contradicts
the Skyrme model and the Jaffe-Wilczek model

The parity question should be interesting to settle experimentally.

Outlook

[- The possible spin-orbit partner of the Θ state $(\mathrm{J}=3 / 2)$
(] Cross correlation between Θ and KN
(V) Identify the levels of the KN scattering state precisely
(V) Other types of diquark-diquark-antiquark

- Jaffe-Wilczek type: S-wave diquark + P-wave diquark

Phys. Rev. Lett. 91 (2003) 232003, hep-ph/0401034.

- Glozman type: $3_{c}{ }^{*} \times 6{ }_{c}$ diquark-diquark cluster

Reply to a criticism on two plateaus

Criticism:

Double exponentials can not reproduce two plateaus in effective mass plot.

$$
G(t)=e^{-M t}\left(1+C \cdot e^{+\Delta M t}\right)
$$

Reply to a criticism on two plateaus

Unstable particle in euclidean time $(\Delta M \gg \gamma, \Delta M t \gg 1)$

$$
\begin{aligned}
& G(t)=e^{-M t}\left(\cos (\gamma t)+\frac{\gamma}{\pi \Delta M^{2} t} \cdot e^{+\Delta M t}\right) \\
& M=1.1, \Delta M=0.2, \gamma=0.1 \\
& \text { C. Michael NPB327 (89) } 515
\end{aligned}
$$

