YITP workshop on Multi-quark Hadrons; Four, Five and More?''

Pentaquark baryons from lattice QCD

Shoichi Sasaki Univ. of Tokyo

S. Sasaki, hep-lat/0310014

Discovery of Exotic S=+1 Baryon

T. Nakano et al. Phys.Rev.Lett.91 (2003) 012002 Laser-Electron Photon facility (LEPS)@Spring-8

 $\gamma n \to \Theta^+ K^- \to n K^+ K^-$

 $\label{eq:positive Strangness} \blacksquare (uudd\overline{s})$

Very narrow width

Spin and Parity are undetermined.

 $Mass = 1540 \pm 10 \text{ MeV}$ $Width \le 25 \,\mathrm{MeV}$ b) **()**+ 0 1.5 1.7 1.8 1.6 MM^c_{vk} (GeV/c²)

Confirmation from other experiments

DIANA/ITEP (hep-ex/0304040) Mass = 1539 ± 2 MeV, Width < 9 MeV

CLAS/JLAB (hep-ex/0307018) Mass = 1542 ± 5 MeV, Width < 21 MeV

SAPHIR/ELSA (hep-ex/0307083) Mass = 1540 ± 4 MeV, Width < 25 MeV

HERMES/DESY (hep-ex/0312044) Mass = 1528 ± 2.6 MeV, Width < 19 ± 5 MeV

But, spin and parity are still undetermined.

The existence of the O has been established.

Exotic anti-decuplet baryons

A narrow exotic S=+1 baryon $\Theta^+(Z^+)$ predicted by the chiral quark-soliton model

Diakonov et al. Z. Phys. A359 (97) 305

"Bound state" of octet baryons with octet mesons

$$8_f \times 8_f = 1_f + 8_f + 8_f + 10_f + 10_f^* + 27_f$$

Exotic S=+1 state in the 10*(I=0) and the 27(I=1)

What can lattice QCD say?

The discovery of the Θ^+ (1540) triggered many model predictions.

What is spin, parity and isospin of the $\Theta^+(1540)$? Existence of the charm (bottom) pentaquark state $(uudd\overline{s}) \rightarrow (uudd\overline{c}) \text{ or } (uudd\overline{b})$

Maximal knowledge about those matters is essential to understanding the structure of the pentaquark state.

Lattice QCD can answer both of them before experimental efforts

Lattice studies of N* spectrum (1)

D x 34 action hep-lat/9809095, D234 action, hep-lat/0011060, 0110164.

Sasaki-Blum-Ohta (RIKEN-BNL)

Domain wall fermion, hep-lat/9909093, Phys. Rev. D65 (2002) 074503.

Richards et al (UKQCD-QCDSF-LHPC) Clover fermion, hep-lat/0011025, Phys. Lett. B532 (2002) 63.

Melnitchouk et al (Adelaide)

Fat-link clover fermion, hep-lat/0202022, Phys. Rev. D67 (2003) 114506.

Nemoto-Nakajima-Matsufuru-Suganuma

Clover fermion & anisotropic action, hep-lat/0204014, Phys.Rev.D68 (2003) 094505.

Bern-Graz-Regensburg Collaboration

Chirally improved fermion, hep-ph/0307073

Lattice studies of N* spectrum (2)

Large mass splitting between N and N* is well reproduced.

Some difficulty of lattice study?

A simple minded study of pentaquark state with

$$\Theta^{+} \sim \frac{\varepsilon_{abc} d_{a} d_{b} u_{c}}{N} \times \overline{s}_{e} u_{e}$$

How can we distinguish between

the mass of the pentaquark state

and

the total energy of the interacting KN two-body system

t x

× O

The 2-pt function $\langle \Theta(t)\overline{\Theta}(0) \rangle$ should be

dominated by the latter if $M_{\odot} > M_{N} + M_{K}$

Some difficulty of lattice study?

A simple minded study of pentaquark state with

$$\Theta^{+} \sim \frac{\varepsilon_{abc} d_{a} d_{b} u_{c}}{N} \times \overline{s}_{e} u_{e}$$

How can we distinguish between

the mass of the pentaquark state

and

the total energy of the interacting KN two-body system

× O

Choose a specific operator with as little overlap

with the KN scattering state as possible

 $|\langle \Theta^+ | \mathcal{O} | 0 \rangle| \gg |\langle K + N | \mathcal{O} | 0 \rangle|$

Exotic pentaquark operator (1)

An exotic description of S=+1 state ($uudd\bar{s}$) can be described by

 $\Theta^+ \sim (\overline{s})_{qq} (\overline{s})_{qq} \overline{s}$

using the flavor antitriplet diquark $(\overline{q}_i)_{qq} = \varepsilon_{ijk}q_jq_k$

flavor: $3_f^* \times 3_f^* \times 3_f^* = 1_f + 8_f + 8_f + 10_f^*$

For the color singlet state, above diquark should be in the color antitriplet as well

color:
$$3_c^* \times 3_c^* \times 3_c^* = 1_c^* + 8_c^* + 8_c^* + 10_c^*$$

Recently, many authors remarked importance of exotic descriptions as diquark-diquark-antiquark

Karliner-Lipkin(hep-ph/0307019), Jaffe-Wilczek(hep-ph/0307341), Carlson et al.(hep-ph/0307396), Glozman(hep-ph/0308232)

Exotic pentaquark operator (2)

The isospin zero and color 3* diquark field can be defined by

$$\Phi_{\Gamma}^{a}(x) = \varepsilon_{ij}\varepsilon_{abc}q_{i,b}^{T}(x)C\Gamma q_{j,c}(x)$$

where Γ is any of the 16 possible Dirac γ -matrices.

Accounting for both color and flavor antisymmetries,

 Γ s are restricted within 1, γ_5 and $\gamma_5 \gamma_{\mu}$

which satisfy the relation $(C\Gamma)^{T} = -C\Gamma$

Three types of diquark: 0^+ (γ_5), 0^- (1), 1^- ($\gamma_5 \gamma_\mu$) can be allowed.

Exotic pentaquark operator (3)

The color singlet state can be constructed by the color antisymmetric part of di-diquark with a strange anti-quark as

$$\varepsilon_{abc} \Phi^a_{\Gamma}(x) \Phi^b_{\Gamma'}(x) C \overline{s}^T_c(x) \quad \text{for} \quad \Gamma \neq \Gamma'$$

G Three types of exotic pentaquark operators are yielded

$$\begin{split} \Theta_{+}(x) &= \varepsilon_{abc} \Phi_{1}^{a}(x) \Phi_{\gamma_{5}}^{b}(x) C \overline{s}_{c}^{T}(x) \qquad J = \frac{1}{2} \\ \Theta_{1}^{\mu}(x) &= \varepsilon_{abc} \Phi_{1}^{a}(x) \Phi_{\gamma_{5}\gamma_{\mu}}^{b}(x) C \overline{s}_{c}^{T}(x) \\ \Theta_{2}^{\mu}(x) &= \varepsilon_{abc} \Phi_{\gamma_{5}}^{a}(x) \Phi_{\gamma_{5}\gamma_{\mu}}^{b}(x) C \overline{s}_{c}^{T}(x) \end{split} \qquad J = \frac{1}{2} \text{ and } \frac{3}{2} \end{split}$$

Exotic pentaquark operator (4)

The parity of the spin-1/2, isosinglet Θ operator is positive $\Theta_{+} = \varepsilon_{abc} \varepsilon_{aef} \varepsilon_{bgh} (u_{e}^{T} C d_{f}) (u_{g}^{T} C \gamma_{5} d_{h}) C \overline{s}_{c}^{T}$ $0^{-} \times 0^{+} \times 1/2^{-} = 1/2^{+}$ Multiplying the left hand side of Θ_{+} by γ_{5} $\Theta_{-} = \gamma_{5} \Theta_{+}$ $= 0 \quad (u_{e}^{T} C d_{e}) (u_{e}^{T} C \alpha_{e} d_{e}) \alpha_{e}^{T} C \overline{s}_{e}^{T}$

 $=\varepsilon_{abc}\varepsilon_{aef}\varepsilon_{bgh}(u_e^T C d_f)(u_g^T C \gamma_5 d_h)\gamma_5 C\bar{s}_c^T$

It turns out that $\langle \Theta_{-}(t)\overline{\Theta}_{-}(0)\rangle = -\gamma_5 \langle \Theta_{+}(t)\overline{\Theta}_{+}(0)\rangle\gamma_5$

For details of the parity projection, see Sasaki-Blum-Ohta PRD65 (2002) 074503.

Details of the simulation

Gauge: Standard plaquette action $\beta = 6.2, a^{-1} \approx 3 \text{ GeV}$ lattice sizes $32^3 \times 48, V \approx (2.2 \text{ fm})^3,$ statistics 135 configs

Fermion: Wilson fermions 5 quark masses (M_{π} > 600MeV) with charm mass K=0.1520, 0.1515, 0.1506, 0.1489, 0.1480, 0.1360 Point source - Point sink (t_{src} = 6)

P.B.C. + A.P.B.C. for the temporal direction

Basic results

 \checkmark A lattice scale is set by the gluonic scale: a = 0.0677 fm, (a⁻¹=2.94 GeV)

✓ "strange": at K = 0.1515 aM_{Vector} = 0.335 (4) ~ 0.98 GeV ~ ϕ (1020)

✓ "charm": at K = 0.1360 aM_{Vector} = 1.031 (2) ~ 3.04 GeV ~ J/ ψ (3097)

✓ chiral extrapolated values:

a $M_{\rho} = 0.235 (6)$	~ 0.69 GeV	11%	(0.77 GeV)
a M _N = 0.361 (10)	~ 1.06 GeV	12%.	(0.94 GeV)
a AM _K = 0.179 (2)	~ 0.53 GeV	8%*	(0.49 GeV)
a aM _Σ = 0.440 (8)	~ 1.30 GeV	8%*	(1.20 GeV)
■ aM _Ξ = 0.486 (7)	~ 1.43 GeV	8%*	(1.32 GeV)
a M _D = 0.641 (2)	~ 1.88 GeV	<1%	(1.89 GeV)
aM_Σ = 0.842 (13)	~ 2.48 GeV	<1%	(2.46 GeV)

the charm-pentaquark lies much higher than the DN threshold

the lowest pentaquark state has negative parity

Summary

We study the mass spectrum of pentaquark states in quenched lattice QCD with the newly proposed interpolating operator.

Formulate and classify the exotic pentaquark interpolating operators.

- \checkmark 3_c* x 3_c* diquark cluster with anti-quark \implies three types
- ✓ Can study spin-3/2 states of the pentaquark as well as spin-1/2 states.
- Couple weakly to the KN two-body system.

Several important observations to understand the structure of $\Theta^+(1540)$

- \checkmark The J^P assignment of the lowest isosinglet Θ state is most likely 1/2 -
- ✓ The uudd ^{bar}c pentaquark with J^P=1/2 [−] lies much higher than the DN threshold. (~ 3.5 GeV).

Exclude the possibility of the charm analog Θ state like a very narrow resonance or a bound state.

Other related studies

Csikor, Fodar, Katz, Kovacs, hep-lat/0309090.v2

Other operator:

$$\Theta \sim \varepsilon_{abc} (u_a^T C \gamma_5 d_b) \{ u_e \bar{s}_e \gamma_5 d_e - (u \leftrightarrow d) \}$$

QCD sum rules

- Sugiyama, Doi, Oka, hep-ph/0309271
- Same exotic diquark-diquark-antiquark operator

$$m_0^2 = \frac{\langle \bar{s}g_s \sigma \cdot Gs \rangle}{\langle \bar{s}s \rangle} > 0.4 \text{ GeV}^2 \quad (m_0^2 = 0.8 \pm 0.2 \text{ GeV}^2)$$

the parity of the Θ^+ is most likely negative

If the Θ⁺ really exists, its parity is most likely negative.

But, this conclusion contradicts the Skyrme model and the Jaffe-Wilczek model

The parity question should be interesting to settle experimentally.

Outlook

- The possible spin-orbit partner of the Θ state (J=3/2)
- **Γ** Cross correlation between Θ and KN
- **Identify the levels of the KN scattering state precisely**
- **Other types of diquark-diquark-antiquark**
 - Jaffe-Wilczek type: S-wave diquark + P-wave diquark Phys. Rev. Lett. 91 (2003) 232003, hep-ph/0401034 Glozman type: 3^{*} x 6[°] diquark-diquark cluster
 - Phys. Lett. B575 (2003) 18.

Reply to a criticism on two plateaus

Criticism:

Double exponentials can not reproduce two plateaus in effective mass plot.

 $G(t) = e^{-Mt} \left(1 + C \cdot e^{+\Delta Mt} \right)$

Reply to a criticism on two plateaus

Unstable particle in euclidean time $(\Delta M \gg \gamma, \Delta M t \gg 1)$

C. Michael NPB327 (89) 515

$$G(t) = e^{-Mt} \left(\cos(\gamma t) + \frac{\gamma}{\pi \Delta M^2 t} \cdot e^{+\Delta Mt} \right)$$

 $M = 1.1, \Delta M = 0.2, \gamma = 0.1$

