Theory Overview of the Pentaquark Baryons

Makoto Oka
 Tokyo Institute of Technology

YITP workshop on Multi-quark Hadrons; Four, Five and More?

Contents

1. Facts
 2. Theories of Θ^{+}
 3. Quark Models
 4. QCD prediction
 5. Conclusion

Discovery of Θ^{+}at SPring-8

T. Nakano et. al. (LEPS collaboration), Phys. Rev. Lett. 91, 012002 (2003)

$$
\begin{aligned}
\gamma \mathrm{n} \rightarrow & \mathrm{~K}^{-} \Theta^{+} \\
& \rightarrow \mathrm{K}^{-} \mathrm{K}^{+} \mathrm{n}
\end{aligned}
$$

SPring-8 tagged $\gamma\left(\mathrm{E}_{\gamma}<2.4 \mathrm{GeV}\right)$
Penta-quark $\quad u^{2} d^{2} \bar{s}$
$M=1540 \pm 10 \mathrm{MeV}$
$\Gamma<25 \mathrm{MeV} \quad$ (4.6б)

Confirmed by ITEP (DIANA), JLAB (CLAS), ELSA (SAPHIR),

$\Xi(\mathrm{I}=3 / 2)$

Ξ^{--}found by NA49 (CERN) hep-ex/0310014
 Ξ^{--}(ssddū) decays into $\Xi^{-} \pi^{-}$ $M=1.862 \mathrm{GeV}, \Gamma<18 \mathrm{MeV}$

Papers

Papers

Facts of Θ^{+}

- $M \approx 1540 \mathrm{MeV}, \Gamma<9 \mathrm{MeV}$
- Strangeness $=+1, B=1 \Longrightarrow Y=2$
- $\mathrm{NopK}^{+}\left(I_{3}=+1\right)$ state $\longrightarrow I=0$
- No lower $\operatorname{Str}=+1$ states

This is the ground state!

- Simplest SU(3) irrep. \rightarrow 10* unique for ≤ 5 quarks

Problems

- Mass too low

Most conventional calculations of $\mathrm{u}^{2} \mathrm{~d}^{2}$ s give higher masses

- Width (to KN) too narrow 100 MeV above the threshold centrifugal barrier

$$
\begin{aligned}
& V_{\mathrm{eff}}^{K N} \sim \frac{\ell(\ell+1)}{2 \mu r^{2}} \simeq \frac{k^{2}}{2 \mu} \\
& \mu(K N) \sim 324 \mathrm{MeV} \quad \quad k \sim 1.3 \mathrm{fm}^{-1} \\
& k r=1 \text { at } r \sim 0.8 \mathrm{fm}
\end{aligned}
$$

Theories for Θ^{+}

- Soliton models (aka Skyrmion) 17 papers

- Excited states in SU(3) Skyrmion: 10* irrep.

Diakonov, Petrov, Polyakov, Zeit. Phys. A359 (1997) 305
positive parity: $1 / 2^{+}$
$\Theta^{+}=1530 \mathrm{MeV}, \Gamma<15 \mathrm{HV} \rightarrow 30 \mathrm{MeV}$ (Jaffe)

- K^{+}Skyrmion BS approach : compared to rigid rotor approach

Itzhaki, Klebanov, Ouyang, Rastelli, hep-ph/0309305
WZW term is repulsive (attractive) for $\mathrm{K}^{+}\left(\mathrm{K}^{-}\right)$Callan, Klebanov (1985)
$1 / 2^{+}$most likely, but not enough to make a bound state

- In general, many (sharp) resonances predicted
- Significant $1 / \mathrm{N}_{\mathrm{c}}$ corrections expected esp. for excited states as they are subleading in $1 / \mathrm{N}_{\mathrm{c}}$

Theories for Θ^{+}

Chiral soliton model

Diakonov, Petrov, Polyakov, Zeit. Phys. A359 (1997) 305
$\mathrm{N}^{*}(1710)$ is assumed to be in the $J^{\pi}=1 / 2^{+}: 10^{*}$ $M=(1890-180 Y) \mathrm{MeV} \rightarrow \Theta^{+}=1530 \mathrm{MeV}$ $\Gamma<15 \mathrm{MeV} \rightarrow 30 \mathrm{MeV}$ (Jaffe)
$\mathrm{SU}(3)$ symmetry requires a penta-quark $\mathrm{N}^{*}\left(I=1 / 2, Y=1,10^{*}\right)$ $(2 / 3) \overline{\mathrm{ss}}+(1 / 3)(\bar{u} \bar{u}+d \bar{d})$
Other candidates

(1/2)-: 1535/ 1650
$(1 / 2)^{+}: 1440 / 1710$
ideal mixing with an octet (Jaffe, Wilczek, PRL 91,55)

Theories for Θ^{+}

- Quark Models

31 papers

- pentaquark spectroscopy
- conventional or exotic (ex. diquarks)
- QCD

7 papers

- Lattice QCD
- QCD sum rule
- Others (ex. χ PT, $1 / \mathrm{N}_{\mathrm{c}}$ expansion)
- Production Mechanisms

35 papers

- determining the quantum numbers, ex spin, parity
- cross sections, polarization
- new reactions to produce pentaquarks

Theories for Θ^{+}

- Hadronic bound/resonances

10 papers
$\mathrm{KN}\left(\mathrm{K}^{+} \mathrm{n}, \mathrm{K}^{0} \mathrm{p}\right) I=0, L=0$ interaction is weak and repulsive
$\mathrm{K}^{+} \mathrm{n}$ weak repulsive $a_{0}^{K^{+} n}=-\frac{M_{N} m_{K}}{8 \pi f_{\pi}^{2}\left(M_{N}+m_{K}\right)}+O\left(m_{K}^{2}\right)$
K-p strong attractive $a_{0}^{K^{-} p}=\frac{M_{N} m_{K}}{4 \pi f_{\pi}^{2}\left(M_{N}+m_{K}\right)}+O\left(m_{K}^{2}\right)$
Other possibilities
$\mathrm{NK} \pi$ bound state $E_{\mathrm{th}}=1.57 \mathrm{GeV}$
Width must be strongly suppressed for $L=0$ bound states.
Bicudo, Marques, hep-ph/0308073 did not find a bound state.

Quark Models

- Symmetry
- Dynamics
- Conventional (traditional, uncorrelated)
- Exotic ideas (correlated, chiral)

Θ^{+}Symmetry

- quatre-quark $\left(\mathrm{u}^{2} \mathrm{~d}^{2}\right)_{I=0, C=3}$

$$
I=0 \square \times C=3 \square=\square \square+\square \text { (no X) }
$$

$$
\text { if orbital }=\square L=0 \leftrightarrow \operatorname{spin} \square \square \quad S=1 \text { only }
$$

$$
\begin{array}{r}
\text { if orbital }=\square \square \\
\\
\begin{array}{r}
\square=1 \leftrightarrow \operatorname{spin} \square
\end{array} \\
\begin{array}{r}
\square \\
\\
\\
\end{array} \begin{array}{r}
S=1
\end{array}
\end{array}
$$

Θ^{+}Symmetry

- possible low energy $\left(\mathrm{u}^{2} \mathrm{~d}^{2}\right)_{I=0, C=3}$ states

- possible quantum numbers for Θ^{+}

$$
\begin{aligned}
\mathrm{u}^{2} \mathrm{~d}^{2}\left(1^{+}\right)+\overline{\mathrm{s}}\left(1 / 2^{-}\right) & =1 / 2^{-}, 3 / 2^{-} \leftrightarrow \mathrm{KN} S \text {-wave } \\
\mathrm{u}^{2} \mathrm{~d}^{2}\left(1^{-}\right)+\overline{\mathrm{s}}\left(1 / 2^{-}\right) & =1 / 2^{+}, 3 / 2^{+} \leftrightarrow \mathrm{KN} P \text {-wave }
\end{aligned}
$$

Quark Models

- Orbital excitation energy

How large is $\Delta E(\Delta L=1)=E(L=1)-E(L=0)$?

- Spin-dependent interaction(s)
hyperfine (HF) interaction
How large is $\Delta E(\Delta S=1)=E(S=1)-E(S=0)$?

Constituent Quark

- Dyson-Schwinger equation

$$
\begin{aligned}
S_{F}^{-1}(p)= & S_{F 0}^{-1}(p)-\Sigma(p) \\
& S_{F 0}^{-1}=\not p-m \\
& S_{F}^{-1}=A(p) p-B(p) \\
& \text { dynamical chiral symmetry breaking }
\end{aligned}
$$

dressed quark propagator gluon

Constituent Quark

- Conserved currents are not renormalized.
I, Y, C charges do not change.
- Constituent quark mass (\sim single particle energy in the bag)

$$
\begin{aligned}
m_{\mathrm{u}, \mathrm{~d}} & \approx 360 \mathrm{MeV} \\
m_{\mathrm{s}} & \approx 540 \mathrm{MeV} \\
\Sigma m_{\mathrm{q}} & =1080 \mathrm{MeV} \text { for } \mathrm{N} / \Delta \\
& =1260 \mathrm{MeV} \text { for } \Lambda / \Sigma / \Sigma^{*} \\
& =1980 \mathrm{MeV} \text { for } \mathrm{u}^{2} \mathrm{~d}^{2} \mathrm{~s}
\end{aligned} \quad \begin{gathered}
\\
+ \text { Hyperfine interaction } \\
\text { (spin dependent) }
\end{gathered}
$$

- Assume that the residual interactions are weak.

Quark Models

- Estimate of orbital excitation energy

$\mathrm{N}^{*}(1535)-\mathrm{N}(940): \quad \Delta E \sim 600 \mathrm{MeV}$ (incl. difference in HF int.)
Kinetic energy contribution for $\Delta L=1$

$$
\begin{aligned}
& \mu=240 \mathrm{MeV} \\
& \left\langle\frac{\ell(\ell+1)}{2 \mu r^{2}}\right\rangle \simeq 450 \mathrm{MeV} \quad \text { for }\left\langle r^{2}\right\rangle^{1 / 2} \sim 0.6 \mathrm{fm}
\end{aligned}
$$

ex. di-quark models

HF interaction in Baryon

Single particle motion

$$
\begin{array}{lll}
\left(\mathrm{s}_{1 / 2}\right)^{3} & J & =1 / 2 \\
& J=3 / 2 & \underline{8} \\
& \underline{10}
\end{array}
$$

HF interaction in Baryon

$\mathrm{N}-\Delta$ mass splitting $(300 \mathrm{MeV}) \leftrightarrow \Delta_{\mathrm{ss}} \sim 50 \mathrm{MeV}$
$\Lambda-\Sigma$ mass splitting ($\sim 77 \mathrm{MeV}$) from $\mathrm{SU}(3)$ breaking

$$
\begin{aligned}
& \Sigma_{\mathrm{HF}}=\underset{\Delta 50 \mathrm{MeV}}{\Delta_{\mathrm{ss}}\left\{\vec{\sigma}_{u} \cdot \vec{\sigma}_{d}+\xi \times \vec{\sigma}_{s} \cdot\left(\vec{\sigma}_{d}+\vec{\sigma}_{u}\right)\right\}} \\
& \Lambda \quad(\mathrm{ud})_{I=0, S=0} \mathrm{~S} \quad 50 \mathrm{MeV} \times[(-3)+0 * \xi] \\
& \Sigma \quad(\mathrm{ud})_{I=1, S=1} \mathrm{~S} \quad 50 \mathrm{MeV} \times[1+(-4) * \xi] \\
& \xi \text { - factor: s-u, s-d HF interaction is weaker than u-d. } \\
& \text { for } \xi=3 / 5 \rightarrow \Sigma-\Lambda=(8 / 15) \times 150 \mathrm{MeV}=80 \mathrm{MeV}
\end{aligned}
$$

Origin of HF Interaction

(1) One gluon exchange or color-magnetic (CM) interaction

Breit-Fermi, DeRujula-Georgi-Glashow (1975)

$$
\begin{aligned}
& \alpha_{s} \lambda_{i} \frac{\vec{\sigma}_{i} \cdot \vec{q}}{m_{i}} \frac{1}{q^{2}} \lambda_{j} \frac{\vec{\sigma}_{j} \cdot \vec{q}}{m_{j}} \simeq \underbrace{\frac{\alpha_{s}}{m_{i} m_{j}}}_{\text {SU(3) breaking } \quad m_{\mathrm{u}} / m_{\mathrm{s}} \sim 3 / 5}\left(\lambda_{i} \cdot \lambda_{j}\right)\left(\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right) \delta\left(\vec{r}_{i j}\right) \\
& \Sigma_{\mathrm{CM}}=-\Delta_{\mathrm{CM}} \Sigma_{i<j} \xi_{i j}\left(\lambda_{i}^{c} \cdot \lambda_{j}^{c}\right)\left(\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right) \\
& \mathrm{N}-\Delta \text { mass splitting }(300 \mathrm{MeV}) \leftrightarrow \Delta_{\mathrm{CM}} \sim 18.75 \mathrm{MeV} \\
& \text { for } \Theta^{+} \text {Carlson et al., hep-ph/0307396}
\end{aligned}
$$

Origin of HF Interaction

(2) Pseudoscalar meson exchange or flavor dependent (FD) interaction Glozman, Riska, Phys. Rep. 208 (1996)

$$
\Sigma_{\mathrm{FD}}=-\Delta_{\mathrm{FD}} \Sigma_{i<j} \xi_{i j}\left(\lambda_{i}^{f} \cdot \lambda_{j}^{f}\right)\left(\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right)
$$

$\mathrm{N}-\Delta$ mass splitting $(300 \mathrm{MeV}) \leftrightarrow \Delta_{\mathrm{FD}} \sim 30 \mathrm{MeV}$
for Θ^{+}Stancu, Riska, hep-ph/0307010, 0402044
CM and FD Jennings, Maltman, hep-ph/0308286 Bijker et al., hep-ph/0310281

Origin of HF Interaction

(3) Instanton-induced-interaction (II I)
aka Kobayashi-Maskawa-'t Hooft (KMT) instanton-light-quark couplings

Origin of HF Interaction

(3) Instanton-induced-interaction (II I)
flavor antisymmetric u - d-s 3-body repulsion
flavor antisymmetric 2-body attraction

$$
\begin{aligned}
V_{\mathrm{III}}^{(3)} & =V^{(3)} \sum_{(i j k)} \mathcal{A}^{f}\left[1-\frac{1}{7}\left(\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}+\boldsymbol{\sigma}_{j} \cdot \boldsymbol{\sigma}_{k}+\boldsymbol{\sigma}_{k} \cdot \boldsymbol{\sigma}_{i}\right)\right] \delta\left(\boldsymbol{r}_{i j}\right) \delta\left(\boldsymbol{r}_{j k}\right) \\
V_{\mathrm{III}}^{(2)} & =V^{(2)} \sum_{i<j} \mathcal{A}^{f}\left[1-\frac{1}{5}\left(\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}\right)\right] \delta\left(\boldsymbol{r}_{i j}\right) \\
& =V_{\mathrm{ij}}^{(2)}(2 / 5)\left(1-\boldsymbol{\sigma}_{\mathrm{i}} \cdot \boldsymbol{\sigma}_{\mathrm{j}}\right) \delta\left(r_{i j}\right) \quad \text { in the baryon } \\
& \\
& \text { proportional to } 1 / m_{\mathrm{i}} m_{\mathrm{j}} \\
& \begin{array}{l}
\text { Shuryak-Rosner (1989) } \\
\text { Takeuchi-Oka }(1989)
\end{array}
\end{aligned}
$$

Origin of HF Interaction

(3) Instanton-induced-interaction (I I I) (2-body part)

$$
\begin{aligned}
& \Sigma_{\text {III }}=\Delta_{\text {III }} \Sigma_{i<j} \mathcal{A}_{i j}^{f} \xi_{i j}\left[1-\frac{1}{5}\left(\vec{\sigma}_{i} \cdot \vec{\sigma}_{j}\right)\right] \\
& \text { N- } \Delta \text { mass splitting }(300 \mathrm{MeV}) \leftrightarrow \Delta_{\text {III }} \sim 125 \mathrm{MeV}
\end{aligned}
$$

It is quite likely that the realistic HF interaction is a combination of $\Sigma_{\mathrm{CM}}, \Sigma_{\mathrm{FD}}$, and Σ_{III}.

Quark Models for Θ^{+}

- Crude estimates of the baryon masses
- CM interactions

$$
\begin{aligned}
& \Sigma_{\mathrm{CM}}=-\Delta_{\mathrm{CM}} \Sigma_{\mathrm{i}<\mathrm{j}}\left(\lambda_{\mathrm{i}} \cdot \lambda_{\mathrm{j}}\right)\left(\sigma_{\mathrm{i}} \cdot \sigma_{\mathrm{j}}\right) \quad \Delta_{\mathrm{CM}}=150 / 8 \mathrm{MeV} \\
& M_{\mathrm{N}}=3 m_{\mathrm{q}}+<\Sigma_{\mathrm{CM}}>\mathrm{N}=360 \times 3-150 \approx 930 \mathrm{MeV} \\
& M_{\Delta}=3 m_{\mathrm{q}}+<\Sigma_{\mathrm{CM}}>_{\Delta}=360 \times 3+150 \approx 1230 \mathrm{MeV} \\
& M_{\Lambda}=3 m_{\mathrm{q}}+\Delta m+<\Sigma_{\mathrm{CM}}>{ }_{\mathrm{C}}=360 \times 3+180-150 \approx 1110 \mathrm{MeV} \\
& \quad \Delta m=m_{\mathrm{s}}-m_{\mathrm{q}} \sim 540-360=180 \mathrm{MeV}
\end{aligned}
$$

Quark Models for Θ^{+}

- H dibaryon Jaffe (1977)

Strangeness $=-2, B=2 \quad \Lambda \Lambda$ threshold $=2231 \mathrm{MeV}$
$M_{\mathrm{H}}=6 m_{\mathrm{q}}+2 \Delta m+<\Sigma_{\mathrm{CM}}>_{\mathrm{H}}=360 \times 6+2 \times 180-450 \approx 2070 \mathrm{MeV}$

The 20-year searches for the bound state were not successful.

The 3-body (u-d-s) III gives $\sim 160 \mathrm{MeV}$ repulsion.
Takeuchi, Oka (1991)

Quark Models for Θ^{+}

- Θ^{+}in $\Sigma_{\mathrm{CM}}\left(1 / 2^{-}: \mathrm{q}^{4}(L=0, S=1)+\overline{\mathrm{s}}: \mathrm{J}=1 / 2\right)$

$$
\begin{aligned}
& M_{\Theta}=5 m_{\mathrm{q}}+\Delta m+<\Sigma_{\mathrm{CM}^{\prime}}{ }_{5 \mathrm{q}} \quad\left(1 / 2^{-}: \mathrm{q}^{4} L=0, S=1, \mathrm{~J}=1 / 2\right) \\
&=360 \times 5+180-250 \\
& \approx 1730 \mathrm{MeV} \quad \text { exp. } 1540 \mathrm{MeV}
\end{aligned}
$$

- $\sim 200 \mathrm{MeV}$ extra attraction is necessary for $\Theta^{+}\left(1 / 2^{-}\right)$in Σ_{CM}
- Other interactions?

FD interaction slightly less repulsive.
III (2-body) is strongly attractive

$$
M_{\Theta}=5 m_{\mathrm{q}}+\Delta m+<\Sigma_{\mathrm{III}}{ }_{5 \mathrm{q}}=360 \times 5+180 \underline{-660} \approx 1320 \mathrm{MeV}
$$

III (3-body) $\sim+50 \mathrm{MeV}$ repulsive

Shinozaki, Takeuchi, Oka (preliminary)

Quark Models for Θ^{+}

Evaluation of HF interactions for $\Theta^{+}\left(1 / 2^{-}\right)$

	$\left\langle\Sigma_{\mathrm{CM}}\right\rangle$	$\left\langle\Sigma_{\mathrm{FD}}\right\rangle$	$\left\langle\Sigma_{\mathrm{III}}\right\rangle$ (2-body)
$S U(3)$ limit	$\Delta_{\mathrm{CM}} \sim 18.7 \mathrm{MeV}$	$\Delta_{\mathrm{FD}} \sim 30 \mathrm{MeV}$	$\Delta_{\mathrm{III}} \sim 125 \mathrm{MeV}$
N	$-8 \Delta_{\mathrm{CM}}$	$-14 \Delta_{\mathrm{FD}}$	$-\frac{12}{5} \Delta_{\mathrm{III}}$
Δ	$+8 \Delta_{\mathrm{CM}}$	$-4 \Delta_{\mathrm{FD}}$	$0 \Delta_{\mathrm{III}}$
K	$-16 \Delta_{\mathrm{CM}}$	$2 \Delta_{\mathrm{FD}}$	$-\frac{8}{5} \Delta_{\mathrm{III}}$
$\Theta^{+}\left(1 / 2^{-}\right)$	$-\frac{56}{3} \Delta_{\mathrm{CM}}$	$-\frac{28}{3} \Delta_{\mathrm{FD}}$	$-\frac{36}{5} \Delta_{\mathrm{III}}$
$\Theta^{+}-(N+K)$	+100 MeV	+80 MeV	-400 MeV

Quark Models for Θ^{+}

- $\Theta^{+}\left(1 / 2^{+}\right) \quad\left(1 / 2^{+}: \mathrm{q}^{4}(L=1, S=0)+\overline{\mathrm{s}}: J=1 / 2\right)$

$$
\begin{aligned}
M_{\Theta}= & 5 m_{\mathrm{q}}+\Delta m+\left\langle\Sigma_{\mathrm{CM}}>_{5 \mathrm{q}}+\Delta E(\Delta L=1)\right. \\
& =360 \times 5+180-620+450 \approx 1810 \mathrm{MeV} \\
M_{\Theta}= & 5 m_{\mathrm{q}}+\Delta m+<\Sigma_{\mathrm{FD}}>_{5 \mathrm{q}}+\Delta E(\Delta L=1) \\
& =360 \times 5+180-660+450 \approx 1770 \mathrm{MeV}
\end{aligned}
$$

- It is unlikely to reverse the $1 / 2^{-} \leftrightarrow 1 / 2^{+}$ordering in conventional constituent quark model.

Quark Models for Θ^{+}

Evaluation of HF interactions for $\Theta^{+}\left(1 / 2^{+}\right)$

	$\left\langle\Sigma_{\mathrm{CM}}\right\rangle$	$\left\langle\Sigma_{\mathrm{FD}}\right\rangle$
SU(3) limit	$\Delta_{\mathrm{CM}} \sim 18.7 \mathrm{MeV}$	$\Delta_{\mathrm{FD}} \sim 30 \mathrm{MeV}$
$\Theta^{+}\left(1 / 2^{+}\right)$	$(-28 \sim-33) \Delta_{\mathrm{CM}}$	$-22 \Delta_{\mathrm{FD}}$
$\Theta^{+}-(N+K)$	$(-75 \sim-170) \mathrm{MeV}$	-300 MeV
$\Theta^{+}\left(1 / 2^{-}\right)-\Theta^{+}\left(1 / 2^{+}\right)$	$175 \sim 270 \mathrm{MeV}$	380 MeV

depends on wave function/ range of the interactions
Jennings, Maltman, hep-ph/0308286

Quark Models for Θ^{+}

- Those who predict $1 / 2^{+}$in conventional quark model Stancu hep-ph/0402044

FD with subtract $\underline{510 \mathrm{MeV}}$ to fit $\Theta^{+}(1540)$
Jennings, Maltman hep-ph/0308286
CM and FD compared
assume $\Delta E(\Delta L=1)=210-250 \mathrm{MeV}$

Missing attraction

Exotic possibilities

- Diquarks

Jaffe, Wilczek, PRL 91 (2003) 232003
Karliner, Lipkin, hep-ph/0307232
ud diquarks color spin
$I=1$ uu, $\{\operatorname{ud}\}$, dd $3^{*} \quad 1^{+}$
$6 \quad 0^{+}$
$I=0 \quad[\mathrm{ud}]_{0} \quad 3^{*} \quad 0^{+} \quad$ strongly attractive $\sim 420 \mathrm{MeV}$

| | 6 | 1^{+} |
| :--- | :--- | :--- | :--- |
| $I=0 \quad[\mathrm{ud}]_{\mathrm{T}}$ | 3^{*} | $1^{-} \quad$ attractive in the instanton vacuum |

tensor diquark
Shuryak, Zahed hep-ph/0310270

Missing attraction

Jaffe, Wilczek Phys. Rev. Lett. 91 (2003) 232003

$$
\begin{aligned}
& 2 \text { diquarks }+\overline{\mathrm{s}} \text { model } \\
& {[\mathrm{ud}]_{0} \times[\mathrm{ud}]_{0}: \text { color antisymmetric }} \\
& L=1=>1 / 2^{+}, 3 / 2^{+} \quad M=840+560+\Delta E(\Delta L) \sim 1400+\Delta E(\Delta L) \\
& \quad \text { However, note } \Delta E(\Delta L=1) \sim 400-450 \mathrm{MeV}
\end{aligned}
$$

Karliner, Lipkin hep-ph/0307232
diquark + triquark $L=1$

$$
\begin{aligned}
& \Delta E(\Delta L=1) \sim 209 \mathrm{MeV} ? \\
& \quad \text { from } \Delta\left[\mathrm{D}_{\mathrm{s}}\left(0^{+}, 2317\right)-\mathrm{D}_{\mathrm{s}}\left(0^{-}, 1969\right)\right]-\mathrm{HF}
\end{aligned}
$$

Shuryak, Zahed hep-ph/0310270

$$
\begin{gathered}
{[\mathrm{ud}]_{0}\left(0^{+}, 420 \mathrm{MeV}\right)+[\mathrm{ud}]_{\mathrm{T}}\left(1^{-}, 570 \mathrm{MeV}\right)+\overline{\mathrm{s}}(560 \mathrm{MeV})} \\
L=0=>1 / 2^{+}, 3 / 2^{+}
\end{gathered}
$$

Diquark spectrum

- Diquark spectrum in lattice QCD (Landau gauge)

Wetzorke, Karsch, hep-lat/0008008
(FSC) $[\mathrm{GeV}]$

Diquark state	$(\overline{3} 0 \overline{3})$	$(61 \overline{3})$	$(\overline{3} 16)$	(606)
$m a_{(F S C)}:$	MEM result	$0.60(2)$	$0.70(3)$	$0.74(9)$
$m a_{(F S C)}:$ 2-exp . fit	$0.62(2)$	$0.73(4)$	$0.77(17)$	$0.50(15)$
maxial entropy method				

- Bethe-Salpeter calculation in the rainbow-ladder QCD

Maris, nucl-th/0204020
diquark mass $\mathrm{m}\left(0^{+}\right) \sim 800 \mathrm{MeV}$

Diquark spectrum

Figure 2: Spectral functions for color anti-triplet (a) and sextet diquark states (b).

Missing attraction

- Diquark in the nucleon (and the other gs baryons)

Diquark enhancement breaks $\mathrm{SU}(6)$ symmetry.
ex.

$$
\begin{aligned}
& \mathrm{p}=[\mathrm{ud}]_{0} \mathrm{u} \quad \mathrm{n}=[\mathrm{ud}]_{0} \mathrm{~d} \\
& \mu_{\mathrm{p}} / \mu_{\mathrm{n}}=e_{\mathrm{p}} / e_{\mathrm{n}}=-2
\end{aligned}
$$

if the quarks do not have anomalous moments.

Missing attraction

- Chiral bag model

Hosaka, Phys. Lett. B571 (2003) 55
uudd $\left(I=0, J^{\pi}=1^{-}\right)+\overline{\mathrm{s}}\left(J^{\pi}=1 / 2^{-}\right)$

$$
\Rightarrow 1 / 2^{+}, 3 / 2^{+}
$$

$$
K^{\pi}=1^{-}
$$

- Bag excitation energy
$E\left(\mathrm{p}_{3 / 2}\right)-E\left(\mathrm{~s}_{1 / 2}\right)=1.16 / R \sim 230 \mathrm{MeV}$ seems too small?
Can the bag model describe excited states?

QCD prediction

- QCD sum rule

Zhu, Phys. Rev. Lett. 91 (2003) 232002
Matheus et al., Phys. Lett. B578 (2004) 323
No parity projection was made.
Only the chiral even terms are considered.
Sugiyama, Doi, Oka, Phys. Lett. B581 (2004) 167 determine mass and parity

- Lattice QCD

Csikor, Fodor, Katz, Kovacs, JHEP 0311 (2003) 070
Sasaki, hep-lat/0310014 Sasaki's talk
Kentucky group, Lee et al., (Lattice03, HYP2003) Mathur's talk

QCD Sum Rule for Θ^{+}

J. Sugiyama, T. Doi, M. O. PLB581 (2004) 167

- Assume $J=1 / 2, I=0$
- 5-quark local operator for $J=1 / 2$ baryon

$$
\begin{array}{r}
J_{\Theta+}(x)= \\
\\
\\
\epsilon^{a b c} \epsilon^{\text {def }} \epsilon^{c f g}\left\{u_{a}^{T}(x) C d_{b}(x)\right\}\left\{u_{d}^{T}(x) C \gamma_{5} d_{e}(x)\right\} C \bar{s}_{g}^{T}(x) \\
\\
\\
\text { color } \\
\text { flavor }
\end{array}
$$

QCD Sum Rule for Θ^{+}

J. Sugiyama, T. Doi, M. O. PLB581 (2004) 167

- Parity projection
- Retarded Green's function at rest, $\boldsymbol{q}=0$.

$$
\begin{aligned}
& \Pi\left(q^{0}\right)=\left.\int d^{4} q e^{i q \cdot x} i\langle 0| \theta\left(x^{0}\right) J(x) \bar{J}(0)|0\rangle\right|_{\vec{q}=0} \\
&-\frac{1}{\pi} \operatorname{Im} \Pi\left(q^{0}\right)=A\left(q^{0}\right) \gamma^{0}+B\left(q^{0}\right) \\
& A\left(q^{0}\right)=\frac{1}{2}\left(\rho^{+}\left(q^{0}\right)+\rho^{-}\left(q^{0}\right)\right) \\
& B\left(q^{0}\right)=\frac{1}{2}\left(\rho^{+}\left(q^{0}\right)-\rho^{-}\left(q^{0}\right)\right)
\end{aligned}
$$

QCD Sum Rule for Θ^{+}

$$
\begin{aligned}
& -\frac{1}{\pi} \operatorname{Im} \Pi\left(q^{0}\right)=A\left(q^{0}\right) \gamma^{0}+B\left(q^{0}\right) \\
& A_{\mathrm{OPE}}\left(q_{0}\right)=\frac{q_{0}^{11}}{5!5!2^{10} 7 \pi^{8}}+\frac{q_{0}^{7}}{3!5!2^{8} \pi^{6}} m_{s}\langle\bar{s} s\rangle \\
& \text { chiral odd }+\frac{q_{0}^{7}}{5!3!2^{10} \pi^{6}}\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle-\frac{q_{0}^{5}}{4!3!2^{9} \pi^{6}} m_{s}\left\langle\bar{s} g_{s} \sigma \cdot G s\right\rangle \\
& \begin{array}{l}
\text { Chiral odd } \\
B_{\mathrm{OPE}}\left(q_{0}\right)=\frac{q_{0}^{1}\left(m_{s}\right)}{5!5!2^{10} \pi^{8}}-\frac{q_{0}^{8}}{4!5!2^{7} \pi^{6}}(\langle\bar{s} s\rangle)+\frac{q_{0}^{6}}{3!4!2^{9} \pi^{6}}\left\langle\bar{s} g_{s} \sigma \cdot G s\right\rangle
\end{array}
\end{aligned}
$$

QCD Sum Rule for Θ^{+}

- Spectral function
- assume the continuum part is equal to the OPE

$$
\rho_{\mathrm{ph}}^{ \pm}\left(q_{0}\right)=\left|\lambda_{ \pm}^{2}\right| \delta\left(q_{0}-m_{ \pm}\right)+\theta\left(q_{0}-\sqrt{s_{\mathrm{th}}}\right) \rho_{\mathrm{OPE}}^{ \pm}\left(q_{0}\right)
$$

- suppress $q_{0}>M$ contribution by a weight function

$$
\begin{aligned}
& W\left(q_{0}\right)=\exp \left(-\frac{q_{0}^{2}}{M^{2}}\right) \\
& \int \rho_{\mathrm{ph}}^{ \pm}\left(q_{0}\right) W\left(q_{0}\right) d q_{0}=\int \rho_{\mathrm{OPE}}^{ \pm}\left(q_{0}\right) W\left(q_{0}\right) d q_{0}
\end{aligned}
$$

QCD Sum Rule for Θ^{+}

－Sum rule The chiral odd terms distinguish parity．

$$
\begin{aligned}
& \left|\lambda_{ \pm}\right|^{2} e^{-\frac{m_{ \pm}^{2}}{M^{2}}}=\frac{1}{3!4!2^{7} \pi^{6}}\left[\frac{1}{5600 \pi^{2}} I_{11}\left(M, s_{\mathrm{th}}\right) \not \pm \frac{1}{800 \pi^{2}} I_{10}\left(M, s_{\mathrm{th}} m_{s}\right)\right. \\
& \text { 田 } \left.\frac{1}{20} I_{8}\left(M, s_{\mathrm{th}}\right) \widehat{s} s\right\rangle+\frac{1}{10} I_{7}\left(M, s_{\mathrm{th}}\right) m_{s}\langle\bar{s} s\rangle \\
& +\frac{1}{40} I_{7}\left(M, s_{\mathrm{th}}\right)\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle \text { 田 } \frac{1}{4} I_{6}\left(M, s_{\mathrm{th}}\left\langle\left\langle\bar{s} g_{s} \sigma \cdot G s\right\rangle\right.\right. \\
& \left.-\frac{1}{4} I_{5}\left(M, s_{\mathrm{th}}\right) m_{s}\left\langle\bar{s} g_{s} \sigma \cdot G s\right\rangle\right], \\
& I_{n}\left(M, s_{\mathrm{th}}\right) \equiv \int_{0}^{\sqrt{s_{\mathrm{th}}}} d q_{0} q_{0}^{n} e^{-\frac{q_{0}^{2}}{M^{2}}}
\end{aligned}
$$

－Differentiate wrt $1 / M^{2}$

QCD Sum Rule for Θ^{+}

- QCD parameters: condensates, mass, ... determined so as to reproduce the masses of the octet baryons

$\langle\bar{q} q\rangle$	$=(-0.23[\mathrm{GeV}])^{3}$
$\langle\bar{s} s\rangle$	$=0.8 \times\langle\bar{q} q\rangle$
$\left\langle\frac{\alpha_{s}}{\pi} G^{2}\right\rangle$	$=(0.33[\mathrm{GeV}])^{4}$
$\langle\bar{s} g \sigma G s\rangle$	$=m_{0}{ }^{2}\langle\bar{s} s\rangle$
$m_{0}{ }^{2}$	$=0.8\left[\mathrm{GeV}^{2}\right]$
m_{s}	$=0.12[\mathrm{GeV}]$

QCD Sum Rule for Θ^{+}

J. Sugiyama, T. Doi, M. O. PLB581 (2004) 167

- positivity of $\left|\lambda_{ \pm}\right|^{2} e^{-\frac{m_{土}^{2}}{M^{2}}}$

positive parity

QCD Sum Rule for Θ^{+}

J. Sugiyama, T. Doi, M. O. PLB581 (2004) 167

QCD Sum Rule for Θ^{+}

J. Sugiyama, T. Doi, M. O. PLB581 (2004) 167

- Conclusion
- Parity splitting caused by chiral symmetry breaking by m_{s} and $\langle\bar{q} q>$ and $\langle\bar{q} \sigma G q>$ condensates
- Parity determined by the positivity of the correlation function $=>1 / 2^{-}$
- Mass $1 / 2^{-} \Theta^{+}$baryon $\approx 1.3-1.7 \mathrm{GeV}$

Lattice QCD for Θ^{+}

- Lattice QCD calculations

- F. Csikor, et al., JHEP 0311 (2003) 070
- S. Sasaki, hep-lat/0310014
- Kentucky group

Each uses a different operator for Θ^{+}.

All agree that the ground state has

$$
J=1 / 2, I=0 \text {, negative parity }
$$

and the positive parity state is far high above.

Conclusion

- QCD predicts a (maybe) $1 / 2^{-}, I=0, \Theta^{+}$.

It may not be easy to distinguish Θ^{+}from the KN threshold.

- Many models suggest positive parity baryons.

It seems unlikely to have $1 / 2^{-}$higher than $1 / 2^{+}$in the quark model.

- Mass prediction

The masses are overestimated by $\geq 100 \mathrm{MeV}-200 \mathrm{MeV}$.
The discrepancy is larger for $1 / 2^{+}$.
Ideas of diquark correlations need careful confirmation.

- Width

Arndt et al. nucl-th/0308012
$\Gamma<1 \mathrm{MeV}$ in order to be consistent with KN PSA.

Width

- How natural is the narrow width?

$$
\begin{array}{ll}
\mathcal{L}_{\mathrm{int}}^{(-)}=g^{-} \bar{\psi}_{N} \psi_{\Theta} \phi_{K} & \Gamma\left(1 / 2^{-}\right)=\frac{\left(g^{-}\right)^{2}}{4 \pi} \frac{M_{N}+E_{N}}{M_{\Theta}} p \\
\mathcal{L}_{\mathrm{int}}^{(+)}=g^{+} \bar{\psi}_{N} \gamma^{5} \psi_{\Theta} \phi_{K} & \Gamma\left(1 / 2^{+}\right)=\frac{\left(g^{+}\right)^{2}}{4 \pi} \frac{M_{N}-E_{N}}{M_{\Theta}} p
\end{array}
$$

$$
\begin{array}{r}
\frac{\Gamma\left(1 / 2^{-}\right)}{\Gamma\left(1 / 2^{+}\right)}=51\left(\frac{g^{-}}{g^{+}}\right)^{2} \quad \text { phase space difference for } L=0 / 1
\end{array}
$$

Width

KN phase shifts

K^{+}-nucleon scattering and exotic $\mathrm{S}=+1$ Baryons
R. A. Arndt, ${ }^{*}$ I. I. Strakovsky, ${ }^{\dagger}$ and R. L. Workman ${ }^{\ddagger}$ Center for Nuclear Studies, Department of Physics,
The George Washington University, Washington, D.C. 20052, U.S.A.
PRC68(2003)04220
$\Gamma \leq 1 \mathrm{MeV} \Rightarrow \boldsymbol{g}^{+}=1.38$ for $1 / 2^{+}$

$$
\boldsymbol{g}^{-}=0.19 \text { for } 1 / 2^{-}
$$

A mechanism of strong suppression of the decay is necessary.
S wave resonance might be very exotic.

Conclusion

- We need more experimental data
- spin and parity
- width
- 10* members in order to confirm "pentaquark" structure.
- excited states ex. $J=3 / 2$ states, $I=1$ states?
- and more theoretical ideas
- How to suppress the width?
- Is this related to other narrow hadron states? ex. $\mathrm{D}_{\mathrm{s}}{ }^{*}$, X

Does the heavy quark play a key role, or a spectator?

- more exotic states? ex. molecular states

