Searching For The Pentaquark at HERMES

Yajun Mao (Peking University)

for HERMES Collaboration

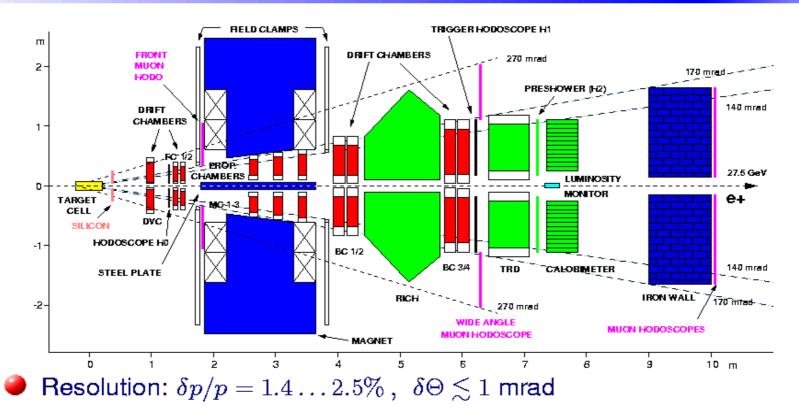
Feb. 18, 2004

Yajun Mao for HERMES Collaboration,

YITP Multi-quark Workshop, Feb. 17-19, 2004

1

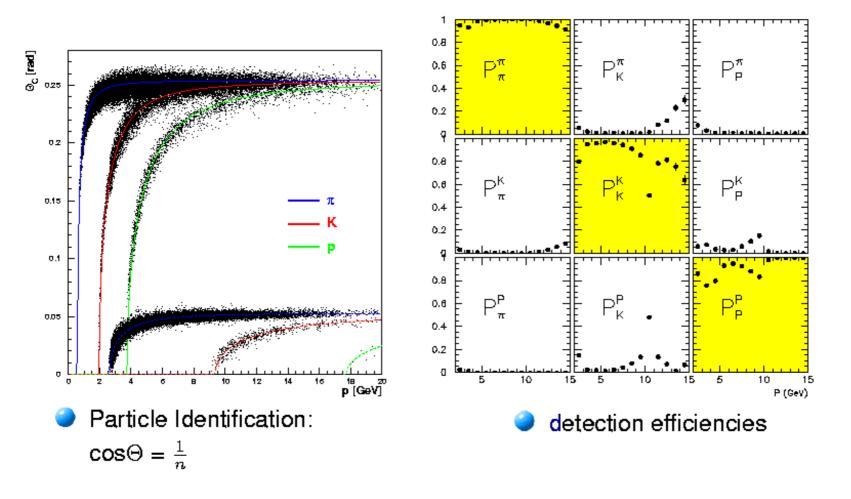
Introduction


- HERMES Spectrometer
 - Event topology
- Particle identification
 - **Background understanding**
- 0
- Isospin, width, cross-section?

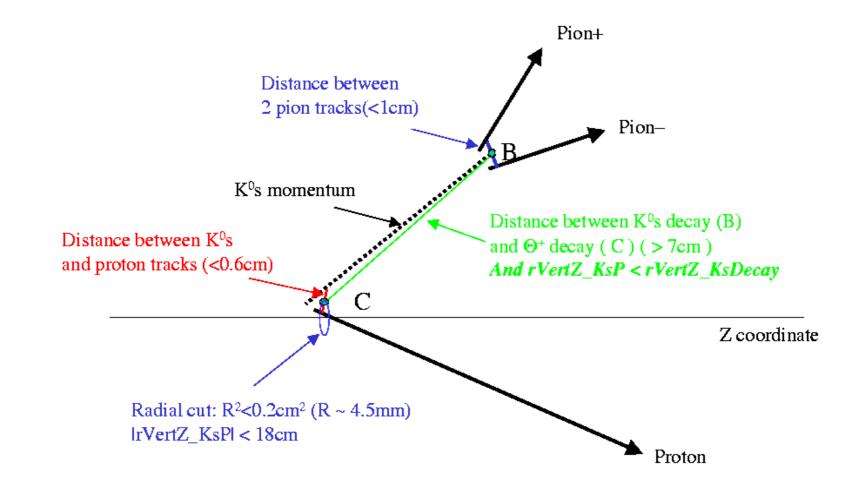
Introduction

- Quasi-real photo production, from 27.5GeV e⁺ scattering off a deuterium target, with decay mode: $\Theta^+ \rightarrow p \ K^0_s \rightarrow p \ \pi^+\pi^-$
- First evidence at HERMES seen in May, 2003
- Preliminary results released on Sept. 24, 2003
- Shown at the EINN 2003 conference in Santorini (Oct 7-12), and JLab workshop (Nov 7, 2003)
- Submitted to PLB & hep-ex (hep-ex/0312044) on Dec. 16, 2003
- Accepted by PLB on Jan. 29, 2004

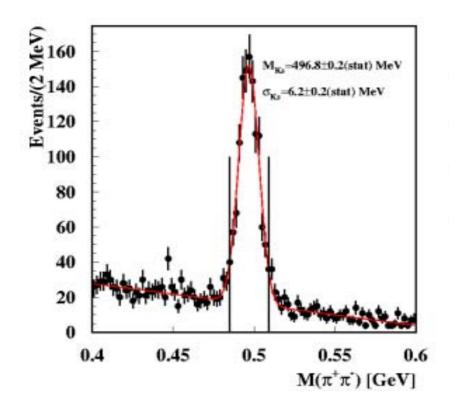
The HERMES Spectrometer


Particle Identification: TRD, Preshower, Calorimeter, RICH (dual radiator)

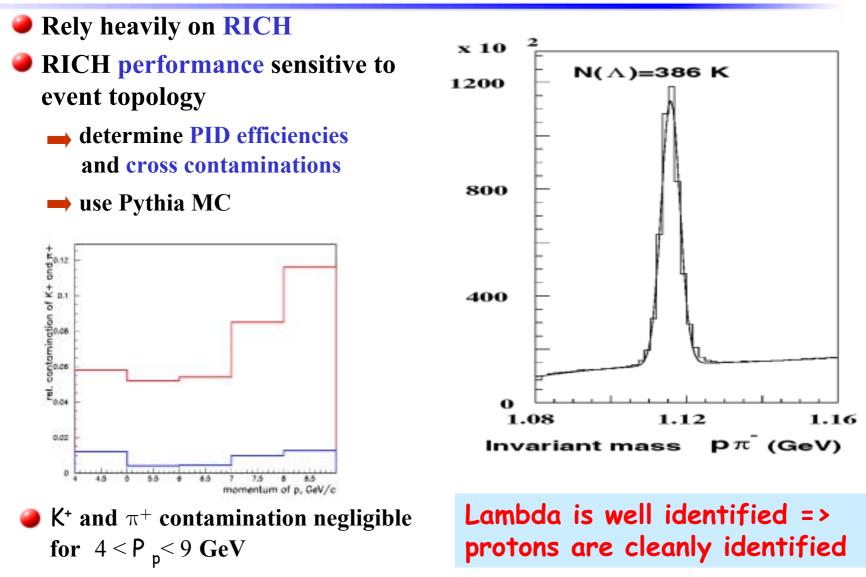
Trigger: coincidence between hodoscope, preshower, calorimeter Events: at least $\pi^+\pi^-$ pair in coincidence with a *p*


Yajun Mao for HERMES Collaboration,

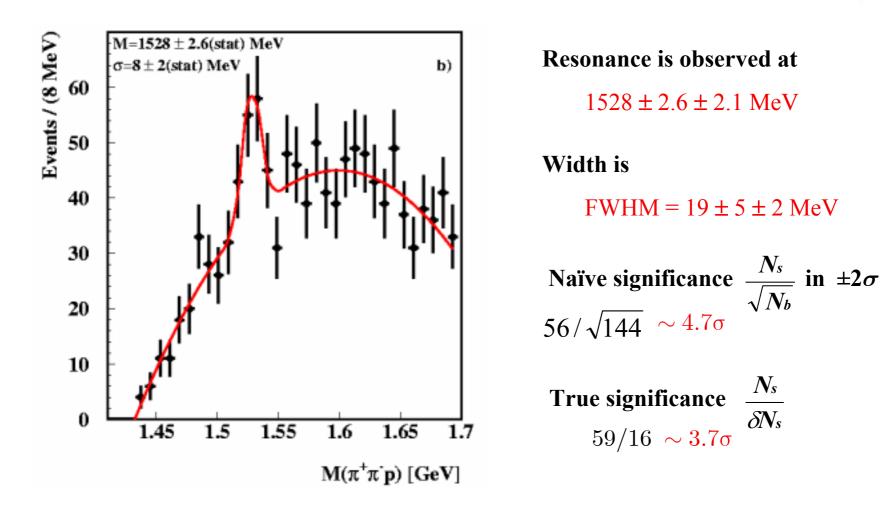
YITP Multi-quark Workshop, Feb. 17-19, 2004


The HERMES RICH

Reconstruction of Θ^+ **At HERMES**

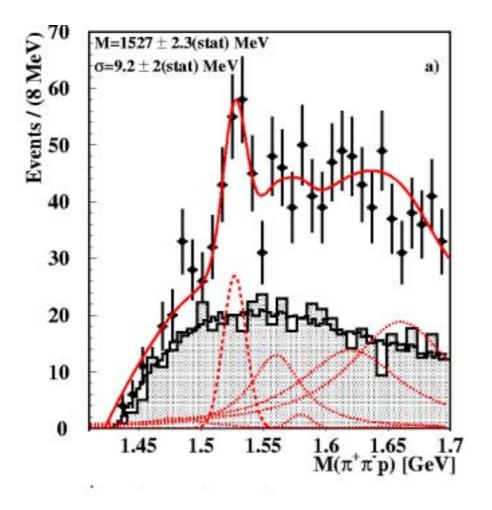

K⁰_s Identification

- Pions identified by RICH
- 2-pion distance checked with MC
- 7cm decay length
- \rightarrow ±2 σ mass window



Proton Indentification

Yajun Mao for HERMES Collaboration,


Fitting With A Polynomial Background

Unbinned fit is used: result doesn't depend on bin size and starting point

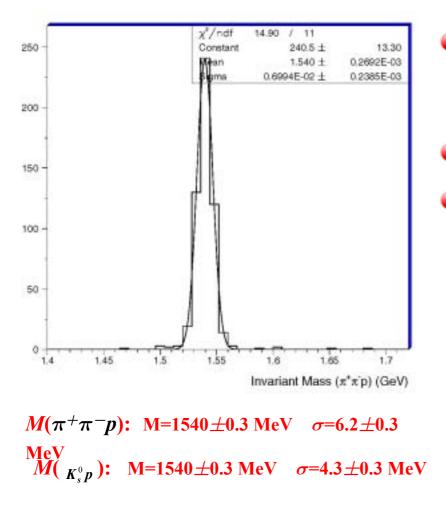
YITP Multi-quark Workshop, Feb. 17-19, 2004

Efforts To Reproduce Background

Non-resonance BG (PYTHIA MC, confirmed by Event Mixing Technique) + Exisiting Σ^* s?

Resonance is observed at

 $1527 \pm 2.3 \pm 2.1 \text{ MeV}$


Width is FWHM = $22 \pm 5 \pm 2$ MeV

Naïve significance $74/\sqrt{145} \sim 6.1\sigma$

True significance

 $78/18 \sim 4.3\sigma$

What A Toy Θ^+ MC Can Tell

- Assuming $M(\Theta^+) = 1540$ MeV $\Gamma(\Theta^+) = 2$ MeV
 - p_z : monotonic fall, p_t : gaussian
- **Full detector simulation**
- Apply same set of cuts as on data, also analyze with same code
- to understand each cut, especially acceptance cuts
- to study acceptance
- → to compare $M(\pi^+\pi^-p)$ and $M(K_s^0p)$ spectra.

	Θ ⁺ Mass [MeV]	FWHM [MeV]	${ m N_s}$ in ±2 σ	${ m N_b}$ in ±2 σ	Naïve signif.	Total N _s ±δN _s	Signif.
a) 152	$7.0\pm2.3\pm2.1$	22 ±5 ±2	74	145	6.1 σ	78 ±18	4.3σ
a') 152	$7.0\pm2.5\pm2.1$	24 ±5 ±2	79	158	6.3σ	83 ±20	4.2σ
b) 152	8.0±2.6 ±2.1	19 ±5 ±2	56	144	4. 7 <i>σ</i>	59 ±16	3.7 σ
b') 152	$7.8 \pm 3.0 \pm 2.1$	20 ±5 ±2	52	155	4.2σ	54 ±16	3.4σ

without ', Results from $M(\pi^+\pi^-p)$ spectrum

With ', Result from $M(K_s^0 p)$ spectrum a), a') are for the background model of MC BG+ Σ^* resonances

b), b') are for the background model of 3rd order of polynomial

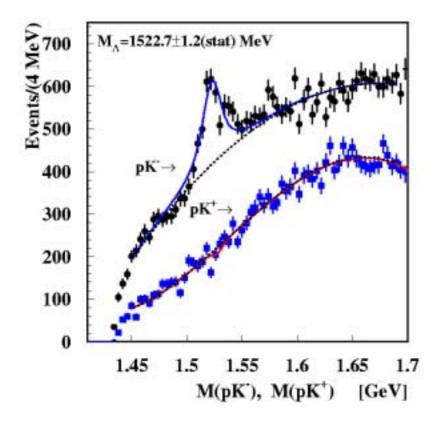
Known Particles As References

	$K_s^0 p \to \pi^+ \pi^-$	$\Lambda(1116) \to p\pi^-$	$\Lambda(1520) \to pK^-$	$\Sigma^{-}(1321) \rightarrow p\pi^{-}\pi^{-}$
HERMES Mass[MeV]	496.8±0.2	1115.70±0.01	1522.7±1.9	1321.5 ±0.3
PDG Mass[MeV]	497.67	1115.68	1519.5±1.0	1321.31±0.13
σ width (data)[MeV]	6.2±0.2	2.6±0.1	4.4±3.7	3.1 ±0.3
σ width (MC)[MeV]	5.4	2.1	3.5	2.5
Decay Pcm[MeV/c]	206	101	244	$139(\Lambda\pi^{-})$

- HERMES can precisely measure the above known particles
- The MC well reproduce the data
- The systematic error estimated is about 1.9MeV

A Non-Zero Width For Θ^+ ?

Observed width FWHM ~ 19 - 24MeV


Objection Provide an area of a set of

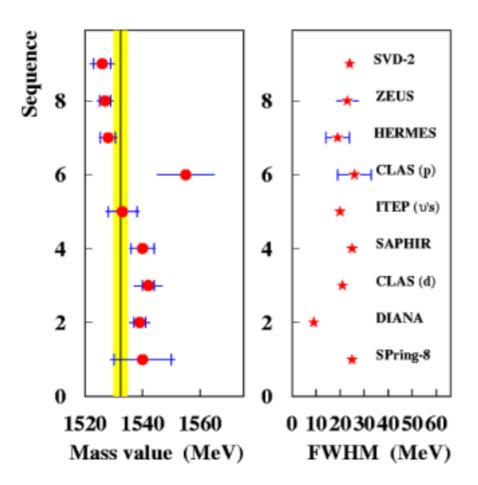
Re-fit the spectra with Breit-Wigner convoluted with a gaussian

a)	BW $\Gamma = 12 \pm 9 \pm 3$ MeV,	fixed gaussian σ = 6.2MeV
a ')	BW $\Gamma = 20 \pm 8 \pm 3$ MeV,	fixed gaussian $\sigma = 4.3 \text{MeV}$
b)	BW $\Gamma = 8 \pm 8 \pm 3$ MeV,	fixed gaussian σ = 6.2MeV
b ')	BW $\Gamma = 13 \pm 9 \pm 3$ MeV,	fixed gaussian σ = 4.3MeV

Took average of a ') & b ') for the better resolution \rightarrow HERMES width: $\Gamma = 17 \pm 9 \pm 3$ MeV

Θ^+ Isospin From HERMES

- Clear Λ(1520) is observed
 in *pK⁻* spectrum
- No peak structure in pK⁺ mass spectrum, gaussian+polyn. fitting shows 0 counts with 91% C.L.


isotensor, rule out isovector, unlikely

isosinglet, very likely

Production Cross-Section?

- Integrated luminosity: 250pb⁻¹
- **a** Acceptance from MC: 1.5% for $\Lambda(1520)$, 0.05% for Θ^+
- Branch ratio to final state
- Flux factor
- Observed signals

Comparison With Other Experiments

- For a better comparison, take result from simply BG fitting
- Left panel: mass average = 1532±2.4MeV

(take ±3MeV of syst. error for ITEP, DIANA)

Right panel: width FWHM

(include detector resolution)

Summary

- A narrow exotic resonance is observed at $1528 \pm 2.6 \pm 2.1$ MeV in quasi-real photo-production via $eD \rightarrow K_s^0 pX$ reaction at HERMES
- The resonance is stable against event topologies, 2 or 3 body mass calculation and no special cut is required
- The mass calibration with known particles shows HERMES can provide a precise mass measurement
- A width of the resonance, $\Gamma = 17 \pm 9 \pm 3$ MeV, is extracted
- Isosinglet is preferred due to lack in peak structure in pK⁺ mass spectrum
- A production cross-section, (100-220nb) ±25%(stat.), is estimated