

1

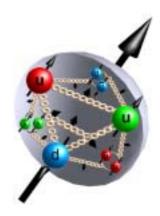
Pentaquarks in Chiral Soliton Models

Bo-Qiang Ma

Department of Physics, Peking University

Feb.17-19, 2004, talk on Feb.18

at Yukawa Institute for Theoretical Physics, Kyoto Univ.

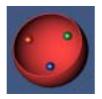

In Collaboration with B. Wu

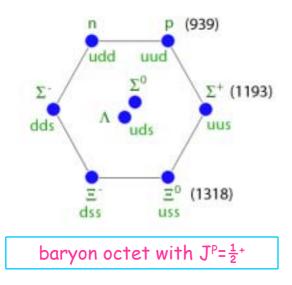
Hep-ph/0312041, PRD Hep-ph/0312326, PLB Hep-ph/0311331

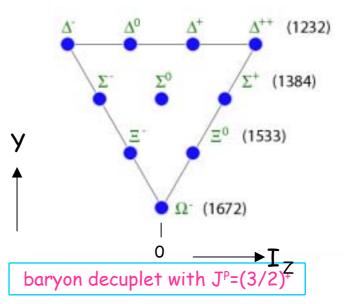
Search for Exotic Baryon States

Standard Quark Model

- classifies hadrons as
 - \cdot mesons ($q\overline{q}$)
 - \cdot baryons (qqq)




- also allows "non-standard" or exotic hadron states
 - \cdot multiquark mesons ($qq\overline{qq}$)
 - \cdot multiquark baryons ($qqqq\overline{q}$)
 - -> appear as baryon resonances
 - hybrid states ($q \bar{q} g$ or q q q g)
 - dibaryons (qqqqqq)
 - glueballs


-> no convincing previous evidence for exotic baryon states.

- ·All baryons observed before
 - classified as singlets, octets and decuplets of SU(3) flavor group
 - -> constructed of 3 quarks only,
 - may have higher orbital angular momentum, resonances
 - have strangeness from S=-3 to S=0

- Exotic Baryons with S=+1
 - cannot be formed from only 3 quarks
 - belong to higher SU(3) multiplet

Previous Searches for Exotic Baryons

- Ideally: kaon-nucleon (KN) scattering
- started in 1966 at BNL
 - -> "*clear"* resonance peak found in K⁺*p* at M=1.91 GeV and Γ=180 MeV
- searches: partial wave analyses in KN scattering
 - candidates: isoscalar $Z_0(1780)$ and $Z_0(1865)$
 - -> give poor evidence (PDG)
- dropped from PDG listings after 1986
- reasons for failure:
 - KN (in)elastic scattering at p(K) corresponding to 1.74 \leq M_Z \leq 2.16 GeV
 - resonance widths large: 70 $\leq \Gamma_{\rm Z} \leq$ 845 MeV
 - MIT bag model predictions: $M_Z \geq 1.7 \; \text{GeV}$
- Λ (1405): molecular meson-baryon state $uuds\overline{u}$?
 - interpretation problematic: could be uds
 - -> ambiguity remains

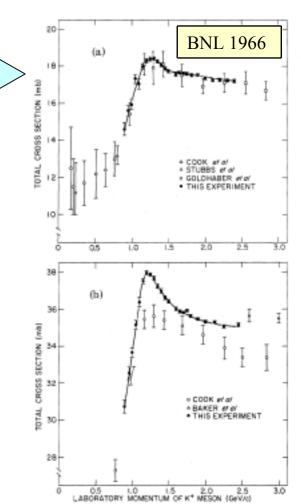
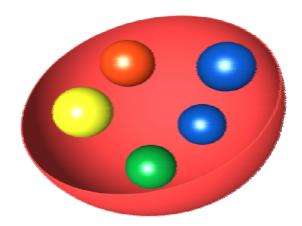
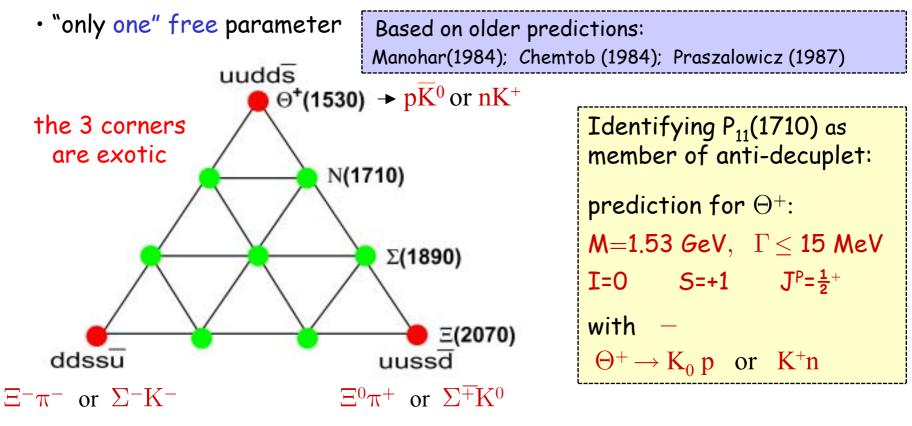



FIG. 1. The total cross section of K^+ mesons on (a) protons, (b) deuterons.

R. Cool et al., PRL 17, 102 (1966)

Pentaguark States


 Predictions of pentaquark states with both strange and charm (by Lipkin et al.),
 no evidence found in experimental searches for more than ten years.

Prediction in Chiral Soliton Model

```
D. Diakonov et al., Z. Phys. A 359, 305 (1997)
```

- all baryons are rotational excitations of a rigid object
- reproduces mass splittings witin 1% of
 - baryon octet $(J^{P}=\frac{1}{2}^{+})$ and decuplet $(J^{P}=3/2^{+})$
- predicts new anti-decuplet (among many $N_c \Omega$ artifacts)

Nothing is "Exotic" in the Chiral Solition Picture

- Baryons are "solitons" in the chiral fields.
- No baryon is "exotic" except that it has different quantum numbers compared to other baryons.

"Exotic"-baryon (Pentaquark) Defination H.Gao and B.-Q. Ma

Mod. Phys. Lett. A 14 (1999) 2313

 A pentaquark qqqqq state can be clearly distinguished from the conventional qqq-baryon state or their hybrids if the flavor of q is different from any of the other four quarks:

minimal Fock state of pentaquark

• Possible existence of uudds and uuuds states are suggested.

Suggestion for search of pentaquark uudds state in physics process

H.Gao and B.-Q. Ma Mod. Phys. Lett. A 14 (1999) 2313

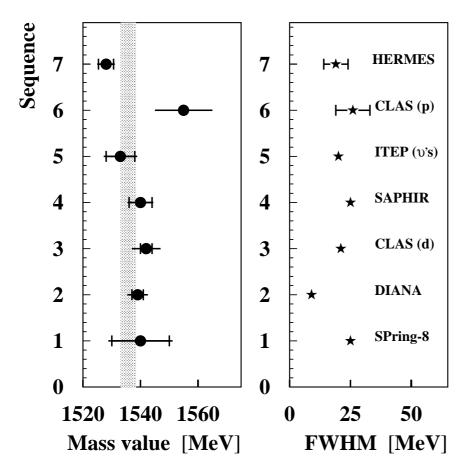
• Suggested: $\gamma * n \rightarrow K^- \Theta^+$

missing mass method to construct Θ^+

• SPring8 and CLAS experiments: sub-process

 $\gamma n \rightarrow \mathrm{K}^{-}(\mathrm{K}^{+}\mathrm{n})$

an additional K⁺ is detected to reduce background for the missing mass spectrum and real photon is used instead of virtual photon.


What is a Pentaquark

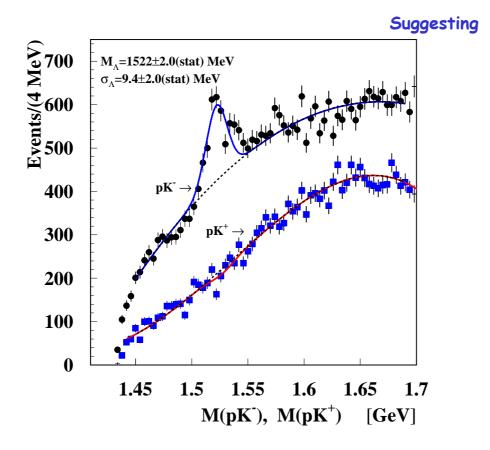
A pentaquark is a hadron that is composed of 4 valence quarks and one valence antiquark. It has strangeness S=+1 and is tightly bound by the strong hadronic force.

-> constitutes a new form of matter

Summary of recent experiments

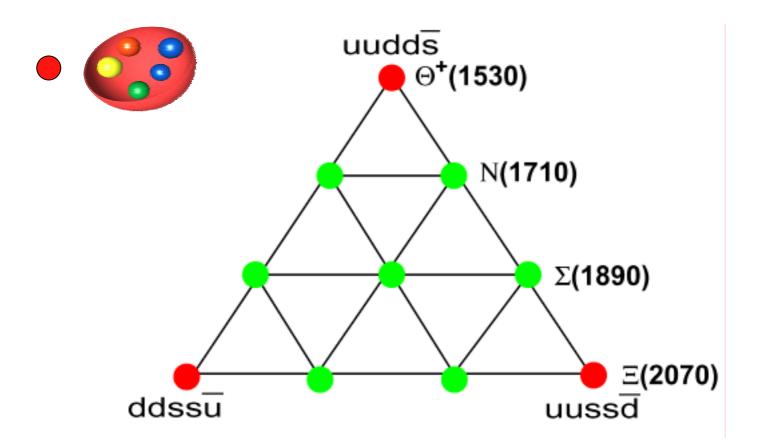
hermes

world-average: $M(\Theta^+)$: 1535.8±2.7 MeV

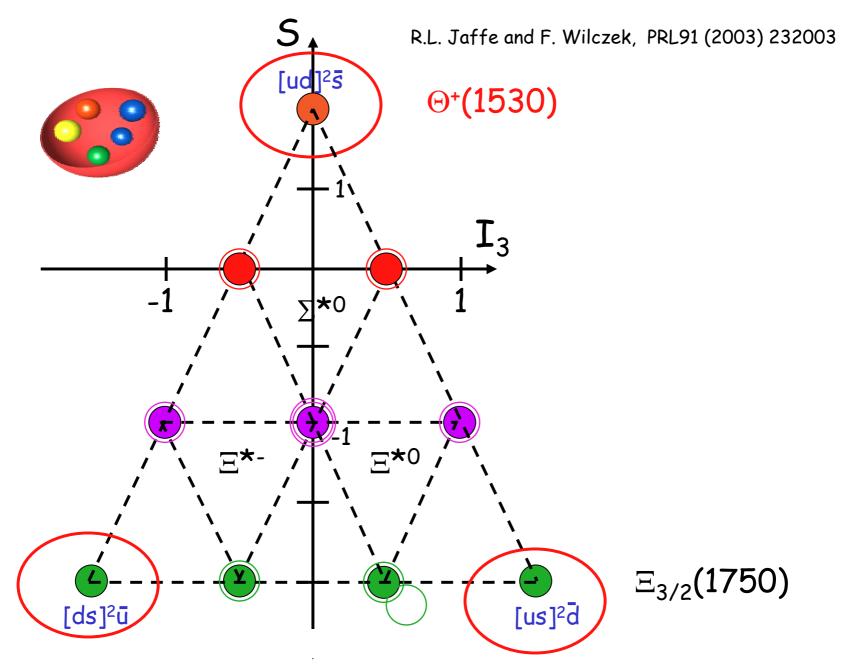

Summary of recent Evidence for

Experiments	Results		
	Mass	Width	$\tau(-N/\sqrt{N})$
	(MeV)	(Mev)	$\sigma(=N_s/\sqrt{N_b})$
SPring8	1540 ±10 ±5	$\Gamma <$ 25	4.6±1
DIANA	1539 \pm 2 \pm "few"	$\Gamma < {f 8}$	4.4
CLAS	1542 ±2 ±5	FWhM = 21	5.3±0.5
SAPHIR	1540 ±4 ±2	Γ $<$ 25	4.8
ITEP (v)	1533 ±5	Γ < 20	6.7
HERMES	1526 ±2 ±2	$\Gamma < 13$	5.6±0.5
KN elastic		Γ $m{O}$ few MeV !	
One theory	1530 MeV	$\Gamma{<}15~{\rm MeV}$	
(XQSM)	I=0 S=+1	$J^{P}=\frac{1}{2}^{+}$	

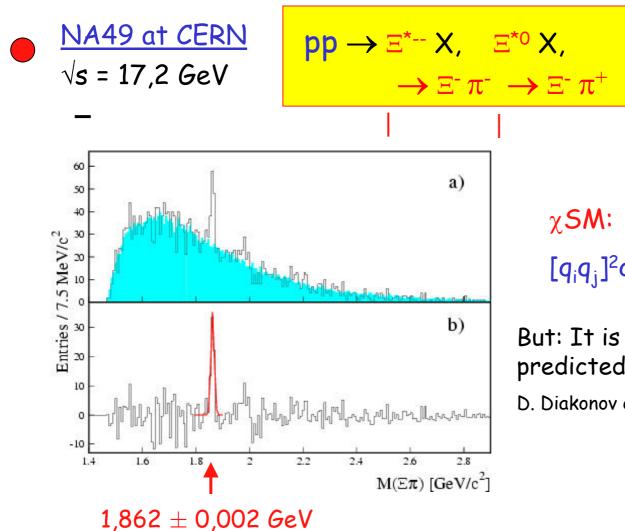
Next:


• Determine width, other quantum numbers (parity!).

no evidence for $\Theta^{++} \rightarrow K^{+}p$ in HERMES



+ Being Isosinglet I=0


Pentaquark States from Theory: anti-decuplet in chiral soliton models-1st version

Prediction of Diquark model

Evidence for New Pentaquark?

C. Alt et al., hep-ex/0310014

 χ SM: M(Ξ^{*--}) = 2070 MeV [q_iq_j]²q: M(Ξ^{*--}) = 1750 MeV

But: It is not what theory predicted !

D. Diakonov et al., hep-ph/0310212

Anti-Decuplet in Chiral Soliton Model - Version 2

Where are the missing members of antidecuplet?

• For baryons with spin $\frac{1}{2}$ and + parity, there is no N around, and a weak evidence for (1770),

1. so Diakonov and Petro (hep-ph/0310212) suggeted a missing N around 1650-1690 MeV;

2. the position of N(1710) is not at M=1710 MeV, but some where around M=1650 to 1690 MeV, suggested by Arndt et al(nucl-th/0312126).

 We noticed (hep-ph/9311331) that there are candidates of N(1650) and (1750) with spin ¹/₂ and negative (-) parity, in PDG

This may suggest a negative parity for antidecuplet members in the chiral soliton model:

parity in chiral solition has two parts: quantized part with positive parity and classical part with unknown parity;

the collective coordinate quantization can not inevitably fix the parity of the corresponding baryons.

The width formula and the widths in the case of negative parity

	Mode	Observation (MeV)	$J^P = \frac{1}{2}^-$ (MeV)		
$\Gamma(B \rightarrow B^{\dagger}m) = \frac{G_{2}^{2}}{4\pi} \frac{m_{B}}{m_{B}} \mathbf{p} $	$\Theta^+ \rightarrow KN$	< 25	25(input)		
$\times \left\{ \frac{\dim_{\mathbb{R}} \gamma}{\dim_{\mathbb{R}} \gamma} \left \sum_{i} \left(\frac{s}{Y_{ii} I_{ii}} \frac{p^{i}}{Y_{ii} I_{i}} \right \frac{p_{i}}{Y_{ii} I_{i}} \right) \left(\frac{s}{Y_{ii}} \frac{p^{i}}{I_{i}} \right) \frac{s_{i}}{I_{i}} \right) \right ^{2} + $	$N(1650) \rightarrow N\pi$	$80 \sim 171$	9		
$\underset{\substack{2n,\frac{1}{2}\underset{c\in [n]}{(2n)},c]}{(2n),c]}}{\sum} \left(\begin{array}{c} s \\ \gamma_n I_n \end{array} \right) \left(\begin{array}{c} s \\ \gamma_r J_r \end{array} \right) \left(\begin{array}{c} s \\ \eta_r \end{array} \right) \left(\begin{array}{c} s \\ \eta_r \end{array} \right) \left(\begin{array}{c} s \\ \eta_r \end{array} \right)$	$N(1650) \rightarrow N\eta$	$4\sim 19$	10		
$\times \sum_{\gamma} \left(\begin{array}{cc} 8 & p_1 \\ \gamma_n I_n & \gamma_n I_n \end{array} \right) \left(\begin{array}{cc} p_1 \\ \gamma_n I_n \end{array} \right) \left(\begin{array}{cc} p_1 \\ \gamma_n I_n \end{array} \right) \left(\begin{array}{cc} 1 & p_2 \\ \gamma_n I_n \end{array} \right) \left(\begin{array}{cc} 1 & p_1 \\ \gamma_n I_n \end{array} \right) \left(\begin{array}{cc} 1 & p_2 \\ \gamma_n I_n \end{array} \right) + $	$N(1650) \rightarrow \Lambda \dot{K}$	$4 \sim 21$	2.4		
$2t_{1}\frac{\dim(p')}{(\dim(p)\dim(p_{1}))}\sum_{i}\left(\left \sum_{k=k,n}^{k}y_{i}^{p'}\right \left \sum_{k=k}^{p}\right)\left(\sum_{i=k}^{k}y_{i}^{p'}\right \left \sum_{k=k}^{p}\right)\right)$	$\Sigma(1750) \rightarrow N\overline{K}$	$6 \sim 64$	8.6		
$\left\{ \sum_{i} \left(\frac{s}{Y_{i} I_{e}} \frac{p'}{Y_{i} I_{e}} \right) \left(\frac{s}{Y_{e} I_{e}} \right) \left(\frac{s}{W} \frac{p'}{I_{e}} \right) \left(\frac{s}{W} \right) \right\}$	$\Sigma(1750) \rightarrow \Sigma \pi$	$<\!\!12.8$	11.6		
	$\Sigma(1750) \rightarrow \Sigma \eta$	$9 \sim 88$	5		
	$\Sigma(1750) \rightarrow \Lambda \pi$	seen	3.3		
	$\Xi_{3/2} \to \Xi \pi$	<18(?)	11		
	$\Xi_{3/2} \rightarrow \Sigma \overline{K}$		36		

Table 1. The widths of baryons in the anti-decuplet

decay width is excellent for S(1750), but poor for N(1650) , possible solution:

SU(3) breaking for baryons with strangeness,

or there is a missing N resonance around 1650 with narrow width.

Theories of positive parity for Θ^+

Chiral Soliton Models (old version)

Diakonov-Petrov-Polyakov, ZPA359(1997)305

Analysis in Quark Model

Stancu-Riska, PLB575(2003)242

Diquark Cluster Model

Jaffe-Wilczek, PRL91(2003)232003

Diquark-Triquark Model

Karliner-Lipkin, PLB575(2003)249

Theories of negative parity for +

Naive Quark Model

Jaffe (1976)

Some Quark Models

Capstick-Page-Roberts, PLB570(2003)185 Huang-Zhang-Yu-Zhou, hep-ph/0310040

QCD Sum Rules

Zhu, PRL91(2003)232002, Sugiyama-Doi-Oka, hep-ph/0309271

Lattice QCD

Sasaki, hep-ph/0310014, Csikor et al, hep-ph/0309090, but we heard difference voices from this conference

Where is the answer? Experiment!

Many suggestions on detecting the parity

Oh-Kim-Lee, hep-ph/0310019 Zhao, hep-ph/0310350 Liu-Ko-Kubarovsky, nucl-th/0310087 Nakayama-Tsushima, hep-ph/0311112 Thomas-Hicks-Hosaka, hep-ph/0312083

Measurement of parity is crucial to test theories

Predictions of New Pentaquarks -27-plet

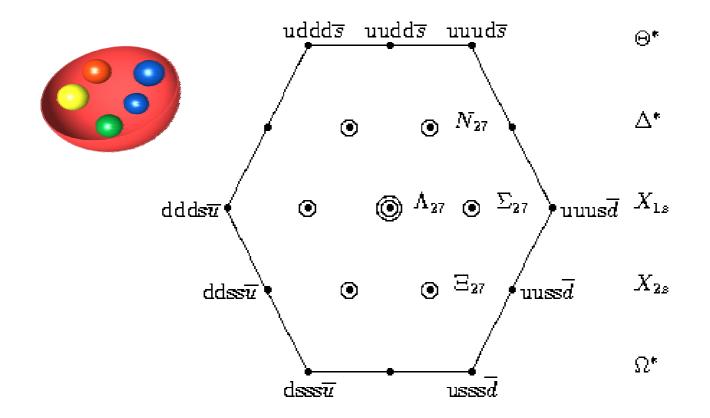
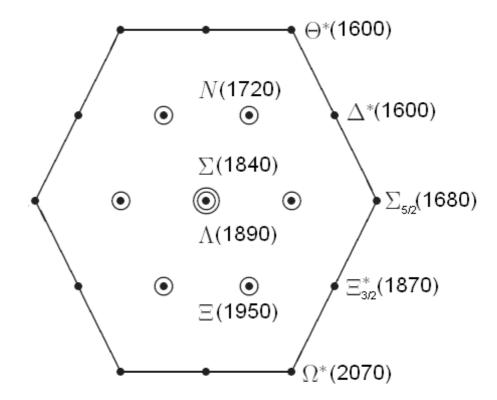


Figure from Wu & Ma, hep-ph/0312041, PRD

The mass splitting of the 27-plet from chiral solitons

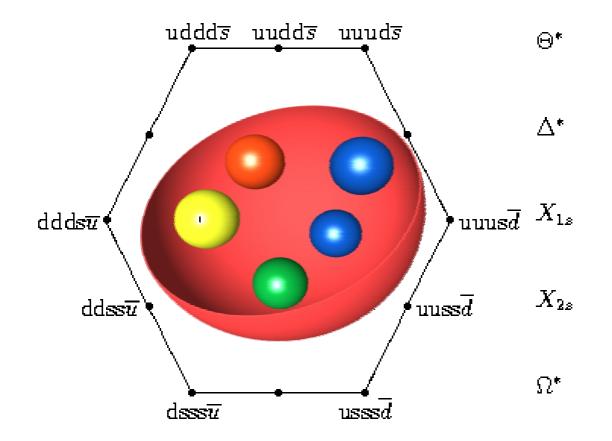
	$\langle B H' B angle$	method I	method Π	$\operatorname{candidate}$	$I(J^{PC})$	PDG
Δ^*	$\frac{13}{112}\alpha + \beta - \frac{65}{224}\gamma$	1.62	1.64	$\Delta(1600)$	$\frac{3}{2}(\frac{3}{2}^+)$	1.55 to 1.70
N_{27}	$\frac{1}{28}\alpha + \beta - \frac{5}{56}\gamma$	1.73	1.73	N(1720)	$\frac{1}{2}(\frac{3}{2}^+)$	1.65 to 1.75
Σ_{27}	$-\frac{1}{56}\alpha + \frac{5}{112}\gamma$	1.79	1.80		$1(\frac{3}{2}^+)$	1.72 to 1.93
Ξ_{27}	$-\frac{17}{112}\alpha - \beta + \frac{85}{224}\gamma$	1.95	1.96	$\Xi(1950)$	$\frac{1}{2}(\frac{3}{2}^+)(?^?)$	1.95 ± 0.015
Λ_{27}	$-\frac{1}{14}\alpha + \frac{5}{28}\gamma$	1.86	1.86	$\Lambda(1890)$	$0(\frac{3}{2}^{+})$	1.85 to 1.91
Θ^*	$\frac{\alpha}{7} + 2\beta - \frac{5}{14}\gamma$	1.61	1.60	?	$1(\frac{3}{2}^+)?(?^?)$?
X_{1s}	$\frac{5}{56}\alpha - \frac{25}{112}\gamma$	1.64	1.68	?	$2(\frac{3}{2}^+)?(?^?)$	
X_{2s}	$-\frac{1}{14}\alpha - \beta + \frac{5}{28}\gamma$	1.84	1.87	?	$\frac{3}{2}(\frac{3}{2}^+)?(?^?)$?
Ω^*	$-\frac{13}{56}\alpha - 2\beta - \frac{65}{112}\gamma$	2.06	2.07	?	$\overline{1}(\frac{\bar{3}^+}{2})?(?^?)$?

Table 1. The masses (GeV) of baryons in the $\{27\}$ multiplet


The widths of the 27-plet baryons

	PDG estimation	modes	branching ratios	Γ_i from data	width \leq calculation
$\Delta(1600)$	250 to 450	$N\pi$	10 to 25%	25 to 113	130
N(1720)	100 to 200	$N\pi$	10 to 20%	10 to 40	19
		$N\eta$	$(4.0\pm1.0)\%$	3 to 10	66
		ΛK	1 to 15%	1 to 30	18
		ΣK			0.39
$\Sigma(1840)$	65 to 120	$N\overline{K}$	0.37 ± 0.13	11 to 60	50
		$\Lambda\pi$			0
$\Lambda(1890)$	60 to 200	NK	20 to 35%	12 to 70	46
		$\Sigma \pi$	3 to 10%	2 to 30	5
$\Xi(1950)$	60 ± 20	$\Lambda \overline{K}$	seen		90
		$\Sigma \overline{K}$	pssible seen		6.5
		$\Xi\pi$	seen		8.3
Θ^*	?	KN	?	?	79
X_{1s}	?	$\Sigma\pi$?	?	96
X_{2s}	?	$\Xi\pi$?	?	58
		$\Sigma \overline{K}$?	?	36
Ω^*	?	$\Xi \overline{K}$?	?	107

Table 2. The widths (MeV) of baryons in the 27-plet


SU(3) Symmetric Case

The picture of the 27-plet baryons: non-exotic members are well established

We suggest that the quantum numbers of (1950) is JP=(3/2)+

Many new pentaquarks to be discovered

Predictions of *

- Walliser-Kopeliovich, hep-ph/0304058 mass=1650/1690 MeV
- Borisyuk-Faber-Kobushkin, hep-ph/0307370 mass=1595 MeV, width=80 MeV
- Wu-Ma, hep-ph/0312326 (PLB) mass=1600 MeV, width less than 43 MeV

Conclusions

- The discovery of pentaquark + opens a new window to understand the basic structure of matter.
- Measurement of the parity of + is crucial to test different theories
- There are new pentaquark states waiting for discovery