Magnetic Moments of the exotic pentaquark Baryons in the chiral quark-soliton model

Hyun-Chul Kim
Department of Physics, and
Nuclear Physics \& Radiation Technology Institute(NuRI)
Pusan National University 609-735, Busan, Republic of Korea

Collaborator: M. Praszałowicz (Cracow)

- Nuclear Theory Group, Pusan National University -

I. Introduction

Let me skip the current state of the art. We have listened to it enough in the present workshop. I do not want to bother you by repeating it.

Motivation

In order to describe photo-processes such as $\gamma n \rightarrow K^{-} \Theta^{+}$, it is essential to know information about the magnetic moment of Θ^{+}.

Aim
To investigate $\mu_{\Theta^{+}}$, based on the chiral quark-soliton model with model parameters fixed by experiments (octet baryon magnetic moments).

II. Formalism

Matrix elements for the magnetic moments of the baryon antidecuplet

$$
\left\langle B_{\overline{10}}\right| \bar{\psi}(z) \gamma_{\mu} \hat{Q} \psi(z)\left|B_{\overline{10}}\right\rangle,
$$

where

$$
\hat{Q}=\left(\begin{array}{ccc}
\frac{2}{3} & 0 & 0 \\
0 & -\frac{1}{3} & 0 \\
0 & 0 & -\frac{1}{3}
\end{array}\right)=\frac{1}{2}\left(\lambda^{3}+\frac{1}{\sqrt{3}} \lambda^{8}\right) .
$$

The Sachs form factors

$$
\begin{aligned}
\left\langle B_{\overline{10}}\left(p^{\prime}\right)\right| \bar{\psi}(z) \gamma_{0} \hat{Q} \psi(z)\left|B_{\overline{10}}(p)\right\rangle & =G_{E}^{B_{\overline{10}}}\left(Q^{2}\right) \\
\left\langle B_{\overline{10}}\left(p^{\prime}\right)\right| \bar{\psi}(z) \gamma_{i} \hat{Q} \psi(z)\left|B_{\overline{10}}(p)\right\rangle & =\frac{1}{2 M_{N}} G_{M}^{B_{\overline{10}}}\left(Q^{2}\right) i \epsilon_{i j k} q^{j}\left\langle s^{\prime}\right| \sigma_{k}|s\rangle . \\
\mu_{B_{\overline{10}}} & =G_{M}^{B_{\overline{10}}}(0)
\end{aligned}
$$

The collective operator of the magnetic moment

$$
\hat{\mu}=v_{1} D_{Q 3}^{(8)}+v_{2} d_{p q 3} D_{Q p}^{(8)} \cdot \hat{J}_{q}+\frac{v_{3}}{\sqrt{3}} D_{Q 8}^{(8)} \hat{J}_{3}
$$

v_{i} in the χ QSM - the moments of inertia expressed generically by

$$
\sum_{m, n}\langle n| \Gamma_{1}|m\rangle\langle m| \Gamma_{2}|n\rangle \mathcal{R}\left(E_{n}, E_{m}, \Lambda\right)
$$

with the quark states and their eigenenergies

$$
H|n\rangle=E_{n}|n\rangle
$$

and the cut-off parameter Λ.

The magnetic moments of the baryon antidecuplet

$$
\mu_{B_{\overline{10}}}=\int d R \psi_{B_{\overline{10}}}^{*}(R) \hat{\mu}(R) \psi_{B_{\overline{10}}}(R)
$$

with the collective wave function:

$$
\psi_{B_{\nu}}(R)=\sqrt{\operatorname{dim}(\nu)}(-1)^{J_{3}-1 / 2} D_{Y, T, T_{3} ; Y^{\prime}, J,-J_{3}}^{(\nu) *}(R) .
$$

- $\nu \rightarrow$ The allowed irreducible representations of the SU(3) flavor group: $\nu=8,10, \overline{10}, \cdots$
- $Y, T, T_{3} \rightarrow$ the corresponding hypercharge, isospin, and its third component, respectively.
- $Y^{\prime}, J, J_{3} \rightarrow$ constrained to be unity for the physical spin states for which J and J_{3} are spin and its third component.

Remark on the collective wave functions
The action of left (flavor) generators $\hat{T}_{\alpha}=-D_{\alpha \beta}^{(8)} \hat{J}_{\beta} \psi_{B_{\mathcal{R}}}$ transforms like a tensor in representation \mathcal{R}, while under the right generators \hat{J}_{α} like a tensor in \mathcal{R}^{*} rather than \mathcal{R}.

> This is the reason why operators like the one multiplied by v_{2} have different matrix elements for the decuplet (which is spin $3 / 2$) and antidecuplet (which is spin $1 / 2$).

D-function algebra

First term:

$$
\left\langle\overline{10}, B, \frac{1}{2}, J_{3}\right| D_{Q 3}^{(8)}(R)\left|\overline{10}, B, \frac{1}{2}, J_{3}\right\rangle=-\frac{1}{12} Q_{B} J_{3}
$$

Second term:

$$
\left\langle\overline{10}, B, \frac{1}{2}, J_{3}\right| d_{3 b c} D_{Q b}^{(8)} J_{c}\left|\overline{10}, B, \frac{1}{2}, S_{3}\right\rangle=-\frac{5}{24} Q_{B_{\overline{10}}} J_{3}
$$

Remark: For the decuplet, we would have

$$
\left\langle 10, B, \frac{3}{2}, J_{3}\right| d_{3 b c} D_{Q b}^{(8)} J_{c}\left|10, B, \frac{3}{2}, J_{3}\right\rangle=\frac{1}{24} Q_{B_{10}} J_{3}
$$

Third term:

$$
\frac{1}{\sqrt{3}}\left\langle 10, B, \frac{3}{2}, J_{3}\right| D_{Q 8}^{(8)} \hat{J}_{3}\left|\overline{10}, B, \frac{1}{2}, S_{3}\right\rangle=\frac{1}{24} Q_{B_{\overline{10}}} J_{3}
$$

The difference between the magnetic moments of the baryon antidecuplet and those of the decuplet arise from this second term!

III. Expression of the antidecuplet magnetic moments

$$
\left.\langle\overline{10}, B| \hat{\mu}|\overline{10}, B\rangle\right|_{m_{s}=0}=-\frac{1}{12}\left(v_{1}+\frac{5}{2} v_{2}-\frac{1}{2} v_{3}\right) Q_{B} J_{3} .
$$

For comparison, the magnetic moments of the decuplet are:

$$
\left.\langle 10, B| \hat{\mu}|10, B\rangle\right|_{m_{s}=0}=-\frac{1}{12}\left(v_{1}-\frac{1}{2} v_{2}-\frac{1}{2} v_{3}\right) Q_{B} J_{3}
$$

IV. Results

Sum rules (Similar to the Colman-Glashow sum rules)

$$
\begin{aligned}
\mu_{\Sigma_{10}^{0}} & =\frac{1}{2}\left(\mu_{\Sigma_{10}^{+}}+\mu_{\Sigma_{10}^{-}}\right) \\
\mu_{\Xi_{3 / 2}^{+}}+\mu_{\Xi_{3 / 2}^{--}} & =\mu_{\Xi_{3 / 2}^{0}}+\mu_{\Xi_{3 / 2}^{-}} \\
\sum \mu_{B_{\overline{10}}} & =0 \\
\mu_{\Theta^{+}}-\mu_{\Xi_{3 / 2}^{--}} & =\frac{1}{4}\left(2 \mu_{\mathrm{p}}+\mu_{\mathrm{n}}+\mu_{\Sigma^{+}}-\mu_{\Sigma^{-}}-\mu_{\Xi^{0}}-2 \mu_{\Xi^{-}}\right) .
\end{aligned}
$$

Numerical Results

New set of variables:

$$
\begin{gathered}
v=\frac{1}{60}\left(v_{1}-\frac{1}{2} v_{2}\right), \quad w=\frac{1}{120} v_{3} \\
\mu_{p}=\mu_{\Sigma^{+}}=-8 v+4 w \\
\mu_{n}=\mu_{\Xi^{0}}=6 v+2 w \\
\mu_{\Lambda}=-\mu_{\Sigma^{0}}=3 v+w \\
\mu_{\Sigma^{-}}=\mu_{\Xi^{-}}=2 v-6 w \\
\mu_{B_{10}}=\frac{15}{2}(-v+w) Q_{B_{10}}
\end{gathered}
$$

Antidecuplet magnetic moments:

$$
\mu_{B_{\overline{10}}}=\left[\frac{5}{2}(-v+w)-\frac{1}{8} v_{2}\right] Q_{B_{\overline{10}}} .
$$

Decuplet magnetic moments:

$$
\mu_{B_{\overline{10}}}=-\frac{3}{2}(v+w) Q_{B_{10}}
$$

The input: The experimental data of the baryon octet magnetic moments.

Fit I: The proton and neutron magnetic moments as input \rightarrow

$$
\begin{array}{lllr}
v & =\left(2 \mu_{\mathrm{n}}-\mu_{\mathrm{p}}\right) / 20 & = & -0.331, \\
w & =\left(4 \mu_{\mathrm{n}}+3 \mu_{\mathrm{p}}\right) / 20 & = & 0.037, \\
v_{2} \sim 0.5 \text { from the } \chi \mathrm{QSM} . &
\end{array}
$$

Fit II: Average values of the octet magnetic moments \rightarrow

$$
\begin{aligned}
v & =\left(2 \mu_{\mathrm{n}}-\mu_{\mathrm{p}}+3 \mu_{\Xi^{0}}+\mu_{\Xi^{-}}-2 \mu_{\Sigma^{-}}-3 \mu_{\Sigma^{+}}\right) / 60 \\
w & =\left(3 \mu_{\mathrm{p}}+4 \mu_{\mathrm{n}}+\mu_{\Xi^{0}}-3 \mu_{\Xi^{-}}-4 \mu_{\Sigma^{-}}-\mu_{\Sigma^{+}}\right) / 60 \\
w & =0.268, \\
v_{2} & \sim 0.5 \text { from the } \chi \mathrm{QSM} .
\end{aligned}
$$

Remark: For the baryon antidecuplet we cannot predict the magnetic moments unambigously because of the new parameter v_{2}.

	exp.	fit I	fit II	χ QSM
p	2.79	input	2.39	2.27
n	-1.91	input	-1.49	-1.55
Λ	-0.61	-0.96	-0.74	-0.78
Σ^{+}	2.46	2.79	2.38	2.27
Σ^{0}	(0.65)	0.96	0.74	0.78
Σ^{-}	-1.16	-0.89	-0.90	-0.71
Ξ^{0}	-1.25	-1.91	-1.49	-1.55
Ξ^{-}	-0.65	-0.89	-0.90	-0.71
Δ^{++}	4.52	5.52	4.92	4.47
Ω^{-}	-2.02	-2.76	-2.46	-2.23
Θ^{+}	$?$	0.30	0.20	0.12

V. NonIreativistic limit

The χ QSM reduces to the free valence quarks which, however, " remember" the soliton structure, as the soliton size $r_{0} \rightarrow 0$.

In the NRQM limit:

$$
v=-\frac{7}{90} K, \quad w=\frac{1}{90} K, \quad v_{3}=\frac{4}{3} K
$$

with

$$
K \sim \int_{0}^{D} d r r^{2} j_{1}(k r) r j_{0}(k r)
$$

In this limit, the proton and magnetic moments are:

$$
\mu_{p}=\frac{2}{3} K, \quad \mu_{n}=-\frac{4}{9} K .
$$

$$
\frac{\mu_{p}}{\mu_{n}}=-\frac{2}{3}
$$

For antidecuplet magnetic moments, we get

$$
\mu_{B_{\overline{10}}}=-\frac{1}{3} K Q_{B_{\overline{10}}}
$$

It becomes negative!

This is caused by the large value of v_{3} in the quark-model limit.

VI. Conclusion and Outlook

- The magnetic moments of the exotic pentaquark baryons were calculated within the framework of the chiral quark-soliton model in the chiral limit.
- The results show that the magnetic moments of the antidecuplet are rather small, compared to typical values of the magnetic moments of the charged baryon octet and decuplet.
- In the limit of the nonrelativistic quark model, i.e. when the soliton size goes to zero, the magnetic moments of the baryon antidecuplet in the chiral limit become negative.
- The effect of $\operatorname{SU}(3)$ symmetry breaking will be expected to be around 25% from our experience and it will be soon reported.

