Chiral Quark Approach for Θ^+ and its production

Feb. 17-19 (2004) Kyoto, Atsushi Hosaka (RCNP, Osaka Univ)

Manifestly the first **EXOTIC** state of qqqqq

Toward multi-quark matter

Relatively small mass Unexpectedly narrow width Parity unknown

Contents

Theories

Quark model, Chiral soliton, Diquark
Chiral bag, Lattice, Sum rule, ...
Parity, decay width
Productions

To know parity

Theoretical papers

About 100 have appeared

Negative

Positive

Theory prediction

D. Diakonov *et al.* (chiral quark soliton) : $1/2^+$, I=0 Naive quark model : 1/2-S. Capstick *et al.* (isotensor formulation) : $1/2^{-}$, $3/2^{-}$, $5/2^{-}$, I=2 Fl. Stancu, D.O. Riska (qq with π int.) $: 1/2^+$ A. Hosaka (chiral potential) : $1/2^+$ (strong π) **R. L. Jaffe** *et al.* (qq-qq-q : 10 + 8) : 1/2⁺, I=0 J. Sugiyama *et al.* (QCD sum rule) : 1/2⁻, I=0 $: 1/2^+ \rightarrow 1/2^-$ F. Csikor *et al.* (Lattice QCD) S. Sasaki (Lattice QCD) : 1/2-

Naïve quark model Diquark vs. Chiral~strong π

Parity in theoretical models

Naïve quark model

What makes the p state lower?

Diquark correlations Jaffe-Wilczek

Chiral interaction, especially hedgehog structure?

Chiral solitonDiakonov et al,Large-Nc QCDZ. Phys. A359 (1997) 305

Baryons ~ solitons (Hartree qq...q)
Θ~ SU(3) rotational band of the hedgehog Skyrmion

$$\frac{\pi_{\text{isospin}} \sim r_{\text{radial}}}{A(t)U_H A(t)^{\dagger}} \longrightarrow \int J^P = 1/$$

Cranking ~ rigid rotation

 $(i\partial - g(\sigma(\vec{x}) + i\vec{\tau} \cdot \vec{\pi}(\vec{x})\gamma_5))\psi = 0.$

$\sigma\tau$ interaction ~ strong pion field

 $\overline{\pi} \sim \hat{r}F(r)$

Spin-isospin splitting

$$H = c_1 + c_2 \langle \chi | \vec{\sigma} \cdot \vec{\tau} | \chi \rangle$$

(J = I = 1/2)
K = J + I = 0, 1

Decay width

A simple estimate in the quark model

mqq coupling

Matrix elements

Carlson et al, hep-ph/0312325

$$\left| \begin{array}{c} & & & \\ & & \\ & & \\ & \\ & N \end{array} \right| = \left| (qqq)_N \right\rangle \\ & & \\ & & \\ & | \Theta \rangle = a \left| (q\overline{q})_K (qqq)_N \right\rangle + others \end{array}$$

1/2-, KN in s-wave $\rightarrow a = 1/2 \rightarrow \Gamma \sim 360 \text{ MeV}$

1/2⁺, KN in p-wave $\rightarrow a = ... \rightarrow \Gamma \sim ** \text{ MeV}$ small about factor 10 smaller

Theta productions

To obtain more information of Θ -- J^P

(1) $\gamma + n \rightarrow K^- + \Theta^+$ Nam-Hosaka-Kim, PLB579, 43 (04)

(2) K* production

(3) K-induced Hyodo-Hosaka-Oset, PLB579, 290 (04)

(4) Model-independent method

Thomas-Hicks-Hosaka, to appear in PTP Nam-Hosaka-Kim, hep-ph/0401074 hep-ph/0402***

(1) $\gamma + n \rightarrow K^{-} + \Theta^{+}$ Nam-Hosaka-Kim, PLB579, 43 (04)

(4) Model-independent method

Thomas-Hicks-Hosaka, to appear in PTP

If
$$S = 0$$
, then $L_i = even$, $P = even \implies P(\Theta) = +$
If $S = 1$, then $L_i = odd$, $P = odd \implies P(\Theta) = -$

S=0

Angular dependence

Summary

Positive parity

Diquark correlation Spin-isospin force due to the hedgehog

Width

Too wide for $1/2^-$, several tens MeV for $1/2^+$

Role of chiral symmetry, strangeness