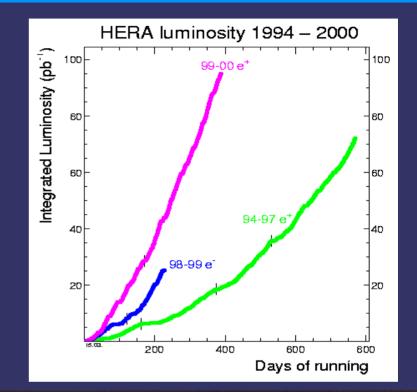
Evidence for exotic baryon decaying to K_s^{o-} (anti)proton

S.Chekanov (ANL)

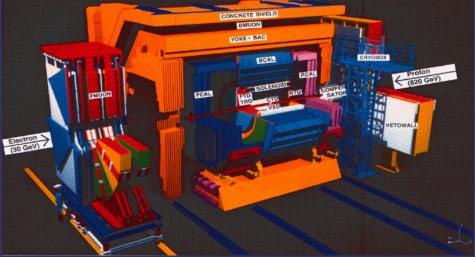
for the ZEUS Collaboration


YITP workshop ``Multi-quark hadrons; four, five and more?'' Feb. 17-19 2004, Kyoto, Japan

Motivation

- Significant interest in baryon spectroscopy triggered by recent observations of possible pentaquark at 1530 MeV and width <15 MeV, predicted by D.Diakonov, V.Petrov and M. Polyakov;
- Number of experiments observed a peak at similar mass (LEPS, DIANA, CLAS, SAPHIR, HERMES, SVD) - all are low-energy experiments;
- In this study, we attempt to find such a state by reconstructing K⁰-(anti)proton invariant mass;
- Measurement is based on the central-tracking region, where the particle production is dominated by fragmentation. ZEUS is a colliding experiment
 to reconstruct regions dominated by proton remnants is difficult

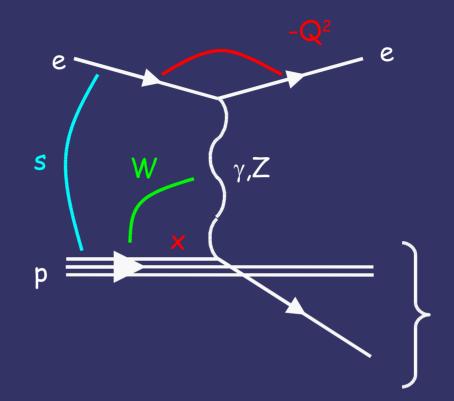
HERA experiments



Proton 820/920 GeV

Electron/positron 27.6 GeV

ZEUS detector



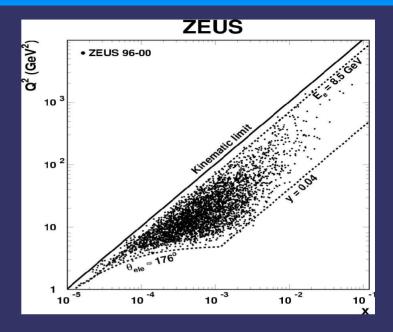
DIS kinematics

s: e - p c.m. energy

 $\sqrt{s} = 300 - 318 \, GeV$

- x: fraction of proton momentum carried by quark
- **W: \gamma p c.m. energy**

Measurements are done in the central fragmentation region. Proton remnant usually escapes undetected

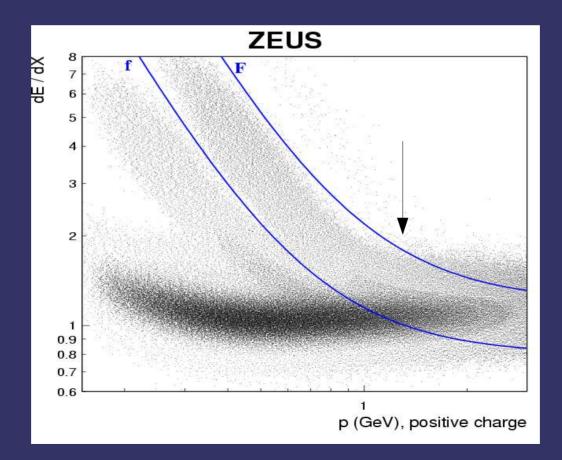

Event selection

- 121 pb⁻¹, 1996-2000,
- e⁺p and e⁻p collisions;
- CM energy of 300-318 GeV;
- Q²>1 GeV².

K⁰_s selection

- CTD tracks, p_T>150 MeV, -1.75 < η < 1.75;
- K⁰_s reconstructed from secondary-vertex tracks;
- Photon conversions removed: $M(e^+e^-) < 50 \text{ MeV}$;
- Λ 's removed $M(\pi p) < 1121$ MeV;
- p_T(K⁰)>300 MeV; |n (K⁰)| < 1.5;</p>

Resolution for M (K_{s}° -(anti)proton) masses ~ 4 ± 1 MeV (from Monte Carlo simulation)

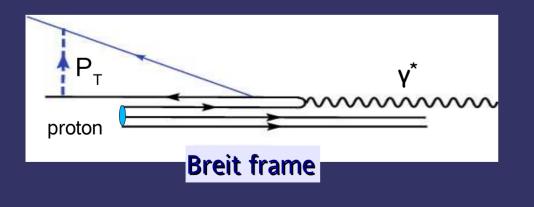

K⁰_s mass peak

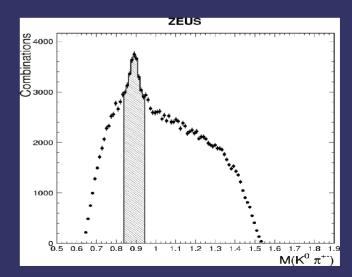
ZEUS Double Gaussian + x 10² linear background Combinations / 0.002 Ge 1500 for the fit • ZEUS 96-00 (prel.) 869690 ±1016 candidates Fit $Q^2 > 1 GeV^2$ Background ~ 6 % 1000 Peak at: 498.12 ± 0.01 (stat) MeV 500 Shift by +0.8 MeV from the PDG value 0 0.48 0.5 0.46 0.52 0.54 $M(\pi^+\pi^-)$

Proton and antiproton selection

Only primary tracks are taken with: f< dE/dX <F

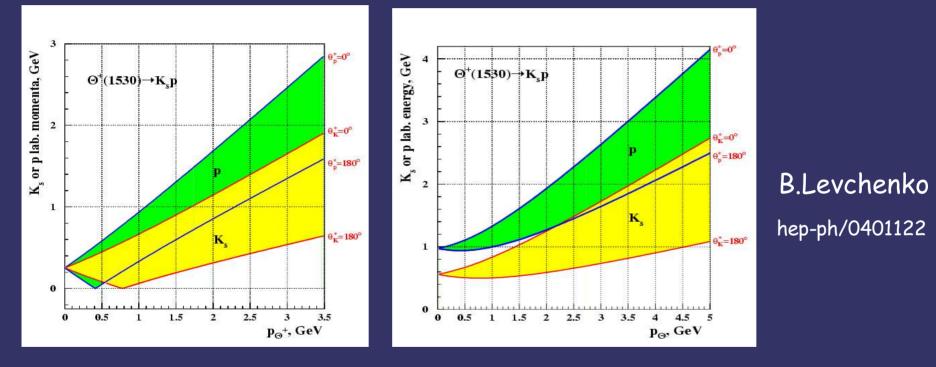
- found from a visual examination of dE/dX;
- verified using a sample with reconstructed Λ ;
- (anti)protons from ARIADNE have a similar band.


Proton and antiproton selection


Most protons are concentrated in the region p ~ 0.8-2 GeV:

Large pion background

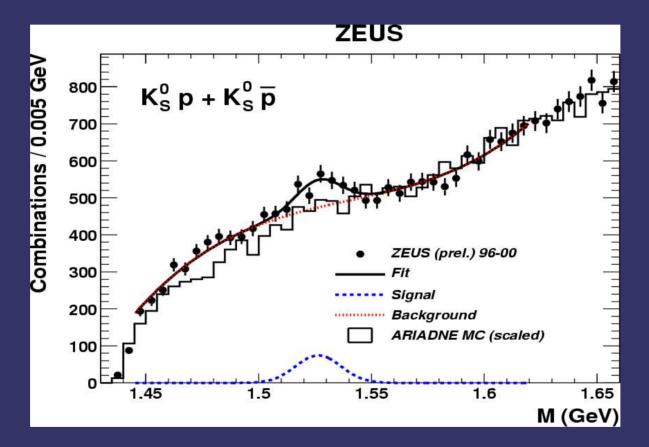
Reject tracks with p>1.3 GeV inside the dE/dX band;


- Assign pion mass to proton candidate, reconstruct $K^0\pi$ mass, rejects pions from K^* : 800 <M($K^0\pi$) <980 MeV;
- E(proton)>E(K^o);
- P_T>0.5 GeV in the Breit frame to look at gluon-rich DIS region (applied posteriori)

Why so complicated ?

Going to high dE/dX values one can get the best possible purity for protons, but in this case the momenta of protons are too low (typically, lower than average momentum of K^0 !) are no phase space left for pentaguark production

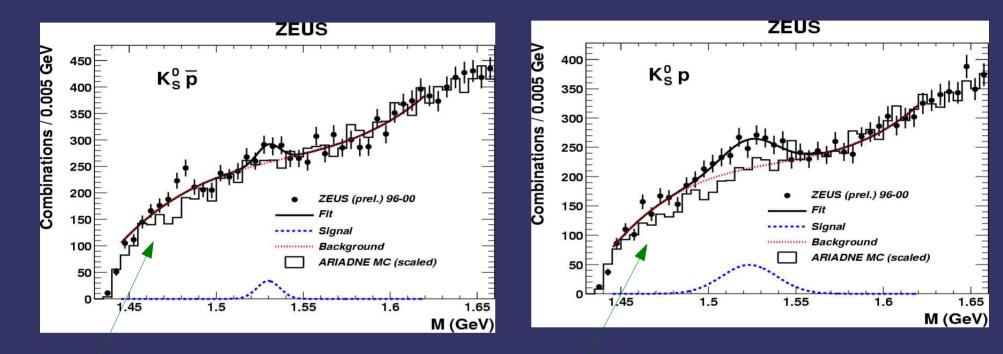
How to reduce combinatorial background? (average charged multiplicity ~ 16 per event!)


use energy-difference cut, go to low W, restrict charged multiplicity, etc..

Possible reflections from known resonances

- Plenty of weakly decaying resonances cannot be reflected to narrow peaks;
- Narrow decays from charmed/bottom mesons cannot give reflections due to their large masses;
- MC contains reflections from known decays or possible misreconstruction.

ZEUS preliminary results


Fit: Gaussian + P3 (free parameters)

Combined sample: 372±75 candidates peak=1527±2(stat.) MeV, W=10 ±2(stat.) MeV

ZEUS preliminary results

Σ(1480) bump?

K°-antiprotons: 126±50 candidates peak=1529±3(stat) MeV, W=7±3 MeV(stat)

Σ(1480) bump?

K°-protons: 393±86 candidates peak=1523±3(stat) MeV, W=16 ±3(stat) MeV

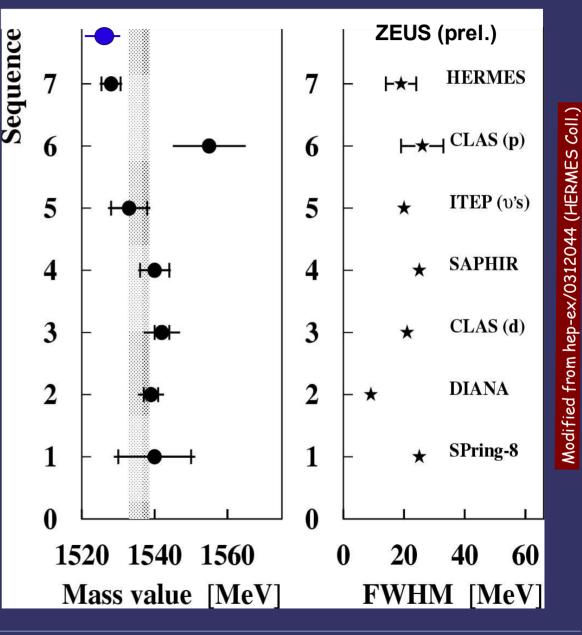
> Note: if the width is fixed to ~ 10 MeV, the fit is still OK

Systematic study

- Several systematic checks were performed:
 - Momentum cut varied within 1.1-1.7 GeV;
 - ✓ Q² raised to 20 GeV²;
 - K^{*} cut removed, replaced by soft dEdX cut (dE/dX>1.15);
 - ✓ P_{τ} in Breit frame removed (decreases the signals by ~0.7 σ);
 - ✓ Fit done with Breit-Wigner (instead of Gaussian) + different order polynomials.

Peak position found to be robust

- Most convincing check: combine K^o with tracks from region dE/dX<1.2 and p<0.9 GeV, where all particles except for (anti)protons can contribute to mass spectra:
 - NO 1527 MeV PEAK!

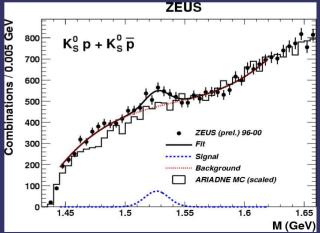

Comparisons with other experiments

Word average:

1536.2 ± 2.6 MeV

(compiled by HERMES, without prel. ZEUS result)

- HERA results prefer smaller pentaguark mass;
- Inclusion of prel. ZEUS result would shift the mass to a lower value



Summary

- A signal at 1527±2(stat.) MeV, with a Gaussian width of 10±2 MeV:
 - \checkmark ~ 5 σ statistical significance (from Gaussian fit);
 - exists for both K^o-protons and K^o-antiproton channels (antipentaguark);
 - consistent with the predicted pentaquark (1530 MeV, <15 MeV width);
 - But lower than the mass measured by CLAS and SAPHIR;
 - Consistent with HERMES;
 - Systematics (~ a few MeV) need to be estimated;
 - PRELIMINARY results! Final results are coming ...
- First measurement in HEP colliding experiment

(in a region dominated by hadronisation!) Can this disfavor some pentaguark models?

Thanks to Prof. K.Tokushuku for the financial support

