Chiral transition

and

some issues on the scalar mesons

Teiji Kunihiro (YITP, Kyoto) Multi-quark hadrons; four, five and more? Feb. 17 — 19, 2004 YITP, Kyoto

Contents of the talk:

 $\S1$ Introduction

 $\S 2$ The significance of the σ meson in hadron physics

 $\S5$ The sigma mesonic mode in hot and dense matter

§4 Summary

§1 Introduction

Tricky points in hadron physics based on QCD:

 QCD is written solely in terms of quark and gluon fields, while, only hadrons are observed in the low-energy regime. Why?

The QCD vacuum \neq the perturbative one. Hadrons are elementary excitations on top of the non-perturbative QCD vacuum.

Symmetries in (classical) QCD Lagrangian are not manifest;
 Color SU(3) —- Confinenment (Hadrons are white!)
 (Apprximate) chiral symmetry —- Spontaneously broken

The low-energy hadron physics is a study of the nature of QCD vacuum and hopefully its symmetry properties.

Hadron Physics ∼ condensed matter physics of the QCD vacuum +Atomic Physics. (Y. Nambu ('60)) Y. Nambu, **117** (1960), 648; Gauge invariance in Superconductivity \rightarrow Appearance of a collective mode in the broken phase coupling to the longitudinal part of the current.

Y. Nambu, PRL 4 (1960), 380;
Y. Nambu and G. Jona-Lasinio, 122 (1960), 345;
Dynamical model of elementary particles based on an analogy with superconductivity.

The pion ; a (massless) collective mode associated with the dynamical breaking of chiral symmetry.

A scalar meson with the mass $2m_f$ appears as another collective mode than the pion.

Chiral Transition = a phase transition of QCD vacuum^{*)}

*): $\langle \bar{q}q \rangle$ being the order parameter.

Eg. Lattice QCD; F. Karsch, Nucl. Phys. Proc. Suppl. 83, 14 (2000).

The wisdom of many-body theory tells us:

If a phase transition is of 2nd order or *weak* 1st order,

 \exists soft modes \sim the fluctuations of the order parameter

For chiral transition,

$$\langle (:\bar{q}q:)^2 \rangle \sim \text{the } \sigma\text{-meson} (f_0) (I=0, J^{PC}=0^{++})$$

The σ meson becomes the soft mode of chiral transition at $T \neq 0$ and/or $\rho_B \neq 0$: $m_\sigma \rightarrow 0$, $\Gamma_\sigma \rightarrow 0$

T. Hatsuda and T.K.: Phys. Lett. **B145** (1984),7; Phys. Rev. Lett. **55** (1985), 158. Cf. Lattice Calculation of the generalized masses F. Karsch, Lect. Note Phys. **583** (2002), 209. $N_f = 2, 8^3 \times 4$; Staggered fermion

- 1. The softening of σ
- 2. a degeneracy of the σ and π at high T
- 3. $U_A(1)$ symmetry not restored even at high T. $(m_{\delta} \leftrightarrow m_{\pi})$

But, what is the siginificance of the σ in hadron physics?

Issues with the low-mass σ meson in QCD

In the constituent quark model; $J^{PC} = 0^{++} \rightarrow {}^{3}P_{0}$

 \rightarrow mass in the 1.2 — 1.6 GeV region.

Some mechanism to down the mass;

(i) Color magnetic interaction between the di-quarks? (Jaffe)

(ii) The collectiveness of the scalar mode as the ps mode; a superposition of $q\bar{q}$ states \leftarrow Chiral symmetry(NJL)

The significance of the σ meson in low energy hadron physics and QCD

1. The pole in this mass range observed in the pi-pi S-matrix. As a compilation of the pole positions of the σ obstined in the modern analyses, see Z. Xiao and H. Zheng, Nucl. Phys. **A695**, 273 (2001)

Significance of respecting chiral symmetry, unitarity and crossing symmetry to reproduce the phase shifts both in the $\sigma(s)$ - and $\rho(t)$ -channels with a low mass σ pole; (Igi and Hikasa; Phys. Rev. **D59**, 034005 (1999)).

2. Seen in decay processes from heavy particles; $D^+ \rightarrow \pi^- \pi^+ \pi^+$ E. M. Aitala et al, Phys. Rev. Lett. (86), 770 (2001).

Weinberg.)

- 3. Responsible for the intermediate range attraction in the nuclear force.
- 4. Accounts for $\Delta I = 1/2$ enhancement in $K^0 \rightarrow 2\pi$ compared with $K^+ \rightarrow \pi^+\pi^-$. E.P. Shabalin (1988); T. Morozumi, C.S. Lim and I. Sanda (1990).
- 5. π -N sigma term $\Sigma_{\pi N} \sim 40-50$ MeV.(naively ~ 15 MeV) \leftarrow enhanced by the collectiveness of the σ . T.Hatsuda and T.K.(1990) ; see the next slide.
- 6. the σ = the quantum fluctuation of the order parameter~ the Higgs particle in the WSG model: $\rightarrow m_{\sigma} = 400-800$ MeV, $\Gamma \sim m_{\sigma}$. (prediction in NJL-like models and mended symmetry of

The poles of the S-matrix in the complex mass plane (GeV) for the σ meson; complied in

(Z. Xiao and H. Z. Zheng, Nucl. Phys. A695 (2001), 273)

(A) No σ pole;

(gəb) ₀₀8

(B) With σ pole;

و₀₀ (deg)

Light quark contents of baryons

В	$\langle ar{u}u angle_B$	$\langle ar{d}d angle_B$	$\langle \bar{s}s \rangle_B$
P (938)	4.97 (2)	4.00 (1)	0.53 (0)
Λ^{0} (1115)	3.63(1)	3.63 <mark>(1)</mark>	1.74(1)
Δ^{++} (1232)	3.66 <mark>(2)</mark>	0.76 (0)	0.26 (0)
Ω^{-} (1672)	0.72 (0)	0.72 (0)	3.71 (3)

T.K. and T. Hatsuda, Phys. Lett. **B240** (1990) 209

The numbers in () are those in the naive quark model. The quark content = the scalar charge may be enhanced by the collective mode, the collective σ mode in the scalar channel!

Cf.the quadrupole electric charge enhanced by the quadrupole giant resonance.

$$\begin{array}{rcl} \downarrow \\ \Sigma_{\pi N} &=& \hat{m} \langle \bar{u}u + \bar{d}d \rangle_N \\ &=& 5.5 \mathrm{MeV} \times (4.97 + 4) \\ &\simeq& 50 \mathrm{MeV} \\ &>>& 5.5 \times (2 + 1) \simeq 17 \mathrm{MeV} \end{array}$$

with $y \equiv 2 \langle \bar{s}s \rangle_N / \langle \bar{u}u + \bar{d}d \rangle_N = 0.12$

The empirical value of π -N Sigma term is reproduced due to the enhancement of the scalar charge due to the σ -mesonic collective mode!

(The small but finite value of y reflects the small flavor mixing in the scalar mesons.)

Wait!

Is the pole observed in the pi-pi phase shift really the σ as the quantum fluctuation of the order parameter of the chiral transition?

A change of the environment \rightarrow a change of the mode coupled to the order parameter

 \Downarrow

Production of the σ -meson in nuclear medium

Useful for exploring the existence of the σ and the possible restoration of chiral symmetry at finite density.

T. K., Prog. Theor. Phys. Suppl. 120(1994), 75

What is a good observables to see the softening in the sigma channel in nuclear medium?

Notice:

A particle might loose it identity when put in a medium.

Eg. $\sigma \leftrightarrow 2\pi$, $\sigma \leftrightarrow p-h$, $\pi+p-h$, $\Delta-h$, $\pi + \Delta-h$...

 \Downarrow

Need of calculation of Strength function

The surprise was,

Such an enhancement had been seen by an Experiment by $CHAOS^*$, at T = 0 but at $\rho_B \neq 0$

*);
$$A(\pi^+, \pi^+\pi^\pm)A' (A=2 \to 208)$$

F. Bonutti et al, Phys. Rev. Lett. **77** (1996), 603.; Nucl. Phys. **A677**, 123(2000)

Differential cross sections of the reaction $A(\gamma, \pi^0\pi^0)A'$

J.G. Messchendorp et al, Phys. Rev. Lett. 89 (2002), 222302.

Calculation of the strength function at $\rho_B \neq 0$

T. Hatsuda, T. K. and H. Shimizu, Phys. Rev. Lett.**82**(1999), 2840. D. Jido, T. Hatsuda and T. K., Phys. Rev. **D63**, 011901 (2001)

K. Yokokawa, T. Hatsuda, A. Hayashigaki and T. K., PR C66, 022201 (2002)

The T matrix in the N/D method.

The in-medium π - π cross sections in I=J=0 channel. The upper (lower) panel shows the case of small (large) restoration corresponding to $0.5f_{\pi} < f_{\pi}^* < f_{\pi}$ ($0.1f_{\pi} < f_{\pi}^* < 0.5f_{\pi}$).

Chiral restoration in the nuclear medium can lead to the required enhancement near the $2m_{\pi}$ threshold!

The softening of the sigma meson pole in the 2nd Riemann SheetK. Yokokawa et al (2002):

The movement of the poles in I=J=0 channel along with the the decrease of f_{π}^* . The crosses are the pole positions in the vacuum.

§Summary

- 1. The σ meson as the quantum fluctuation of the order parameter of the chiral transition may account for various phenomena in hadron physics which otherwise remain misterious.
- 2. There have been accumulation of experimental evidence of the σ pole in the pi-pi scattering matrix.

 ← chiral symmetry, analyticity and crossing symmetry.
- 3. Partial restoration of chiral symmetry in hot and dense medium as represented by the decreasing f_{π} leads to a softening of the σ meson pole in the 2nd Riemann sheet even in the non-linear realization of chiral symmetry.
- 4. Even a slight restoration of chiral symmetry in the hadronic matter leads to a peculiar enhancement in the spectral function in the σ channel near the $2m_{\pi}$ threshold.
- 5. Such an enhancement might have been observed in the reaction $A(\pi^+(\gamma), (\pi^+\pi^-)_{I=J=0})A'$.
- 6. Further theoretical and experimental works are needed to confirm the above.

Recent development: N_c dependence

T. Schaefer('03); Instanton liq. model (~ NJL) At $N_c = 3$, The low mass σ exists which is a linear combination of $q\bar{q}$ and $(q\bar{q})^2$.

Larger N_c , m_σ goes up and σ being mainly composed of $q\bar{q}$.

c.f. J. R. Pelaez M. Harada et al.

