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A classification of Hankel determinant solutions of the restricted Toda chain equations is
presented through polynomial Ansatz for moments. Each solution corresponds to the Sheffer
class orthogonal polynomials. In turn, these solutions are equivalent to solutions with sepa-
rated variables in Toda chain. These solutions lead naturally to explicit Hankel determinants
of some combinatorial numbers.

1 Introduction

The Toda chain equations [17]

u̇n = un(bn − bn−1), n = 1, 2, . . . , ḃn = un+1 − un, n = 0, 1, . . . (1)

with additional condition

u0 = 0 (2)

has the well-known relation with the theory of orthogonal polynomials, where the dot indicates
the differentiation with respect to t. In what follows we will call equations (1) with restriction (2)
the restricted Toda chain (TC) equations.

Let Pn(x; t) be orthogonal polynomials satisfying the three-term recurrence relation

Pn+1(x) + bnPn(x) + unPn−1(x) = xPn(x), n = 1, 2, . . . (3)

with initial conditions

P0 = 1, P1(x) = x − b0. (4)

We will assume that un �= 0, n = 1, 2, . . . . Then, by the Favard theorem [4], there exists
a nondegenerate linear functional σ such that the polynomials Pn(x) are orthogonal with respect
to it:

σ(Pn(x)Pm(x)) = hnδnm, (5)

where hn are normalization constants. The linear functional σ can be defined through its
moments

cn = σ(xn), n = 0, 1, . . . . (6)

It is usually assumed that c0 = 1 (standard normalization condition), but we will not assume
this condition in the followings. So we will assume that c0 is an arbitrary nonzero parameter.
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Introduce the Hankel determinants

Dn = det(ci+j)i,j=0,...,n−1, D0 = 1, D1 = c0. (7)

Then the polynomials Pn(x) can be uniquely represented as [4]

Pn(x) =
1

Dn

∣∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn

c1 c2 · · · cn+1

· · · · · · · · · · · ·
cn−1 cn · · · c2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣
. (8)

The normalization constants are expressed as

hn =
Dn+1

Dn
, h0 = D1 = c0. (9)

While the recurrence coefficients un satisfy the relation

un =
hn

hn−1
=

Dn−1Dn+1

D2
n

. (10)

Thus we have

hn = c0u1u2 · · ·un. (11)

Then we have

Theorem 1. The following statements are equivalent.

(i) The recurrence coefficients un, bn satisfy the TC equations (1) with the restriction u0 = 0
(i.e. ḃ0 = u1).

(ii) The corresponding orthogonal polynomials Pn(x; t) satisfy the relation

Ṗn(x; t) = −unPn−1(x; t). (12)

(iii) The moments cn satisfy the relation

ċn = cn+1 +
ċ0 − c1

c0
cn, (13)

where c0(t) is an arbitrary differentiable function of t.

See [1, 13], for the proof of this theorem.
We note only that it is commonly assumed that c0(t) ≡ 1, but in what follows we will choose

another normalization condition

ċ0 = c1. (14)

Then the condition (13) becomes very simple

ċn = cn+1, (15)

or, equivalently,

cn(t) =
dnc0(t)

dtn
. (16)

Hence, for the Toda chain case, the Hankel determinants Dn = Dn(t) have the form

Dn = det(c(i+k)
0 )i,k=0,...,n−1, D0 = 1, D1 = c0, (17)

where c
(j)
0 means the j-th derivative of c0(t) with respect to t.

Now we have
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Proposition 1. The restricted TC equations are equivalent also to the equations

d2 log Dn

dt2
=

Dn−1Dn+1

D2
n

, n = 1, 2, . . . . (18)

Proof of this proposition is almost obvious. Equations (18) are equivalent to the Hirota
bilinear form [6] for the restricted TC equations which was analyzed by many authors (see,
e.g. [2, 11]). The parametric determinants such as Dn(t) have played a very fundamental role
in the Hirota–Sato theory of integrable dynamical systems as tau-functions. As was noticed
in [15,18] the relation (18) for the Hankel determinants of type (17) with (15) was firstly obtained
by Sylvester and is known today as the Sylvester theorem [9].

Note also that for the Hankel determinants of the form (17) we have two useful relations

bn =
Ḋn+1

Dn+1
− Ḋn

Dn
(19)

and

ḣn = hnbn. (20)

In particular, for n = 0 we have from (20)

b0 =
ċ0

c0
. (21)

The relation (21) allows us to restore c0(t) if the recurrence coefficient b0 = b0(t) is known
explicitly from Toda chain solutions (1).

In this paper we consider a class of explicit solutions of the restricted TC equations through
a separation of variables cn(t). Such solutions correspond to the Sheffer class orthogonal polyno-
mials such as the Meixner, Pollaczek, Laguerre, Charlier and Hermite polynomials. It is shown
that Hankel determinants of some combinatorial numbers, such as the Euler, the binomial coef-
ficients and Bell numbers, are then presented.

2 Generating functions of the moments

In the theory of orthogonal polynomials the Stieltjes function F (z) is defined as a generating
function of the moments [4]

F (z) =
c0

z
+

c1

z2
+ · · · + cn

zn+1
+ · · · . (22)

If moments cn depend on t according to the Toda Ansatz (15), we then have

Ḟ (z; t) =
c1

z
+

c2

z2
+ · · · + cn

zn
+ · · · = zF (z) − c0. (23)

In fact, the relation (23) is equivalent to restricted TC equations (15).
We consider also a generating function of another type:

Φ(p) =
∞∑

k=0

ck
pk

k!
. (24)

Note that in number theory for a given sequence of numbers cn the generating function of
type (22) is called a G-function, and the generating function of type (24) is called an E-
function [5]. The relationship between functions F (z) and Φ(p) is known and is given by the
(formal) Laplace transform:

F (z) =
∞∑

k=0

ckz
−k−1 =

∞∑
k=0

ck

∫ ∞

0

pke−pz

k!
dp =

∫ ∞

0
e−pzΦ(p)dp. (25)
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For the case of the restricted TC equations with condition (15) we see that generating func-
tion Φ(p) is given automatically by the formal Taylor expansion

Φ(p; t) =
∞∑

k=0

ck(t)
pk

k!
=

∞∑
k=0

c
(k)
0 (t)

pk

k!
= c0(t + p) (26)

of c0(t + p). Thus the E-generating function is given just by the shifted c0(t + p) zero-moment
function. The Stieltjes function is given then as the Laplace transform

F (z; t) =
∫ ∞

0
e−pzc0(t + p)dp. (27)

3 Special polynomial Ansatz and separated variables

In this section we describe concrete examples of the E-generating functions c0(t) (26) which
stem from special Ansatz for functional structure of the moments cn(t). Namely, we assume
a separation of variables as follows

cn(t) = Tn(y(t))c0(t), n = 0, 1, . . . , (28)

where Tn(y(t)) is a polynomial of exactly degree n of some (unknown) variable y(t). Note that
in [7,8] some systems of orthogonal polynomials were considered having moments as orthogonal
polynomials from some variable. In our approach we do not require that Tn(y) be orthogonal
polynomials.

The main result is

Theorem 2. In order to Ansatz (28) be compatible with the restricted TC equations it is nec-
essary and sufficient that the function y(t) be a solution of the equation

ẏ(t) = σ(y), (29)

where σ(y) is a (nonzero) polynomial in y with degree less or equal 2,

σ(y) = ξy2 + ηy + ζ, (30)

and the function φ(y) = c0(t(y)) be a solution of the equation

φ′(y) =
τ(y)
σ(y)

φ(y), (31)

where τ(y) is a polynomial of exactly first degree,

τ(y) = αy + β (32)

with α �= 0 and β arbitrary parameters, and t(y) is the inverse function with respect to y(t).
The restriction between α and ξ, ξ �= −α/n, n = 1, 2, . . . , is assumed.

It is possible also to find explicit expression for the recurrence coefficients:

Proposition 2. If moments cn(t) satisfy the polynomial Ansatz (28) then the recurrence coef-
ficients un(t), bn(t) have the explicit expressions

bn(t(y)) = τ(y) + nσ′(y),

un(t(y)) = nσ(y)
(

τ ′(y) +
1
2
(n − 1)σ′′(y)

)
= nσ(y)(α + (n − 1)ξ). (33)
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Proof of this proposition is an elementary application of induction.
We see that the recurrence coefficient un(t) has expression with separated variables:

un(t) = q(t)κn, n = 0, 1, . . . , (34)

where q(t) = σ(y(t)) depends only on t and κn = n(α + (n − 1)ξ) depends only on n.
It is possible to prove an inverse theorem

Theorem 3. Two Ansatzes (28) and (34) (with the restriction κ0 = 0) for solutions of the
restricted TC equations are equivalent.

Such solutions were constructed in [12] and [19]. They were also rediscovered in [3]. In [19]
and [3] it was established, that corresponding polynomials belong to the Sheffer class.

4 Hankel determinants of some combinatorial numbers

In this section we consider some special cases of the general scheme of separated variables.
Corresponding Toda solutions lead to simple determinantal formulas containing classical com-
binatorial numbers.

Case 1. σ(y) = 1 − y2. For a special choice of parameters we have τ(y) = −y and c0 =
2et/(e2t + 1). For recurrence coefficients we have

bn(t) = −(1 + 2n) tanh(t), un(t) = −n2sech2(t). (35)

As discussed in [19,3] this solution is related to the Meixner orthogonal polynomials.
It is to be noted that the moment c0(t) has an intimate relationship to the Euler numbers Ek,

k = 0, 1, 2, . . . , which are combinatorial numbers defined by

Ek = ik
k∑

m=0

2mam

(
k
m

)
,

2
et + 1

=
∞∑

k=0

am
tm

m!
, i =

√−1. (36)

Here am are rational numbers and
(

k
m

)
are binomial coefficients. Thus c0(t) = Φ(2t; 1/2)

and the coefficients Ek(1/2) of the expansion

c0(t) =
∞∑

k=0

Ek(1/2)
2ktk

k!
(37)

give the Euler numbers Ek through the relation (2i)kEk(1/2) = Ek.

Proposition 3. The Hankel determinant of the Euler numbers is given by

det(Ei+j)i,j=0,...,n−1 =

(
n−1∏
k=0

k!

)2

. (38)

Radoux [15] presented the Hankel determinant det(E2i+2j)i,j=0,...,n−1 =
(

n−1∏
k=0

(2k)!
)2

of

nonzero Euler numbers E2i+2j .
Case 2. σ(y) = −(y − 1)2. In this case σ(y) has a real root of multiplicity 2. For a special

choice of parameters we have

bn(t) = −z +
α − 2n

t + 1
, un(t) =

n(n − α − 1)
(t + 1)2

. (39)
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with some parameter z. These coefficients correspond to the Laguerre polynomials. Then we
obtain

c0(t) = (t + 1)αe−zt+z. (40)

Expression (t + 1)αe−zt is a generating function of the Laguerre polynomials Lk
α−k(z):

(t + 1)αe−zt =
∞∑

k=0

Lk
α−k(z)tk.

From this relation it follows that Lk
α−k(0) =

(
α
k

)
are (generalized) binomial coefficients.

Let us consider the Hankel determinant of the generating function of the generalized binomial
coefficients Lk

α−k(0)

Dn(t) = det(di+j(t))i,j=0,...,n−1, D0(t) = 1, D1(t) = d0,

d0(t) = (t + 1)α, dn(t) =
dnd0(t)

dtn
. (41)

Proposition 4. The Hankel determinant of the generalized binomial coefficients Lk
α−k(0) is

given by

Dn(0) = (−1)[n/2]
n−1∏
k=1

k!(α − k + 1)n−k. (42)

Case 3. σ(y) = y + 1. For special choice of parameters the solution of the restricted TC
equations is

bn(t) = un(t) = net (43)

which corresponds to the Charlier orthogonal polynomials [19].
For c0(t) we have

c0(t) = exp
(
et − 1

)
.

This expression coincides with the generating function of the Bell numbers Bk. Namely,

c0(t) =
∞∑

k=0

Bk
tk

k!
, Bk =

k∑
m=0

S(k, m), (44)

where S(k, m) is the Stirling numbers of the second kind. Thus Bk = c
(k)
0 (t). It is known [15]

that the associated Hankel determinants

Dn(t) = det(c(i+j)
0 (t))i,j=0,...,n−1 and Dn(0) = det(Bi+j)i,j=0,...,n−1

are

Dn(t) =
n−1∏
k=0

k! · exp
(

n(n − 1)
2

t + net − n

)
,

Dn(0) =
n−1∏
k=0

k!, (45)

respectively.
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Case 4. σ(y) = 1. In this case we have (shifted) Hermite polynomials:

bn(t) = −2t + 2z, un(t) = −2n. (46)

The E-generating function

c0(t) = exp
(−t2 + 2zt

)
(47)

of the Hermite polynomials Hk(z) is derived, namely,

c0(t) =
∞∑

k=0

Hk(z)
tk

k!
. (48)

The Hankel determinants Dn = det(Hi+j(z))i,j=0,...,n−1 of Hermite polynomials is found in
Radoux [14] by an alternative way. The result is

Dn = det(Hi+j(z))i,j=0,...,n−1 = (−2)n(n−1)
n−1∏
k=0

k!. (49)

Note that Dn is independent of z.
Thus the Hankel determinants of some combinatorial numbers can be easily calculated exp-

licitly from corresponding Toda solutions with separated variables.
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