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Symmetries of Radial Maxwell–Vlasov Equations
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Lie group of point symmetries is determined for Vlasov–Maxwell equations of spherically
symmetric plasmas. The case of multi-component plasma is considered. Classification of
possible invariant solutions is presented. Comparison with the case of one-dimensional
rectilinear motion of plasma particles is made.

1 Introduction

The case of purely radial motion of charges is singled out by the general properties of Maxwell
equations. Similarly as in one-dimensional rectilinear motion of particles of plasma there is no
generation of time dependent magnetic field in this case [1]. Thus, there is no radiation and the
self-consistent solutions of the Vlasov–Maxwell equations (distribution functions, electric field
and no magnetic field) exist.

The case of one-dimensional rectilinear motion is widely employed in plasma physics [2–5].
It is used as a starting point for analysis of more complicated systems with very significant
applications. The same is expected in the case of radial motion, however, this case is not
popular and not widely employed. Thus, research into that topic is important and promising.

In this paper we find Lie symmetry groups of point transformations of the Vlasov–Maxwell
equations for collision-less multi-component plasma without magnetic field in the case of purely
radial motion of particles. We find the optimal system of one-parameter subgroups and classify
corresponding invariant solutions.

We use the direct method for determining symmetry groups of integro-differential equations
(IDE’s) presented in papers [6–8]. For the IDE’s of the type

F (x1, . . . , xn, y, y
1
, . . . , y

m
) +

∫
X

dx1 · · · dxlf(x1, . . . , xn, y, y
1
, . . . , y

k
) = 0, (1)

where the symbol y
m

denotes the set of all partial derivatives of m-order, it consists in the

following infinitesimal criterion of invariance

G(m)F +
∫

X
dx1 · · · dxl

[
G(k)f + f

l∑
i=1

∂iξi

]
= 0 on solutions of (1), (2)

where G(m) is the extended to m-th order generator of the point transformation

x̃i = eεGxi = xi + εξi(x, y) + O(
ε2

)
,

ỹ = eεGy = y + εη(x, y) + O(
ε2

)
, (3)

with the generator

G = ξi(x, y)∂xi + η(x, y)∂y. (4)

The method is a natural generalization of the well known Ovsiannikov’s method for partial
differential equations which can be found in monographs [9–12]. The short review with relevant
references of other methods of finding symmetries of integro-differential equations is given in [8].
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2 Symmetries of radial multi-component plasma

In the case of purely radial motion the Vlasov–Maxwell system of equations for collision-less,
multi-component, plasmas without magnetic field has the following form

∂tfα + u∂rfα +
qα

mα
E∂ufα = 0,

∂tE +
∑
α

qα

ε0

∫ ∞

0
du u3fα = 0, ∂rE +

2
r

E −
∑
α

qα

ε0

∫ ∞

0
du u2fα = 0, (5)

where E = E(t, r) is the radial component of electric field vector, u is the radial component
of vector velocity, fα = fα(t, r, u) is the radial distribution function of α-plasma component
(integrated over the solid angle in velocity space with 4π included), qα, mα are charge and mass
of α-particles respectively, and ε0 is electric permittivity of free space.

In this case, the generators (4) of point transformations (3) take the form

G = τ∂t + ξ∂r + ρ∂u +
∑
α

ηα∂fα + ζ∂E . (6)

Using the criterion (2) we obtain

0 = ∂fατ = ∂fαξ = ∂fαρ = ∂Eτ = ∂Eξ = ∂Eρ,

and the following determining equations (limits 0 and ∞ of integrals are dropped):

0 = ∂Eηα 0 = ∂fαζ, 0 = u∂uτ − ∂uξ, 0 =
(
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)
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du u3fβ − (∂tξ)
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ε0
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+
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qβ

ε0

∫
du(3u2ρfβ + u3ηβ + u3fβ∂uρ),

0 = (∂Eζ − ∂xξ)
∑
β

qβ

ε0

∫
du u2fβ + (∂rτ)

∑
β

qβ

ε0

∫
du u3fβ

−
∑
β

qβ

ε0

∫
du

(
2uρfβ + u2ηβ + u2fβ∂uρ

)
.

For different species α �= β also qα/mα �= qβ/mβ for real plasmas (except the special case of
deuterium and helium nuclei). This leads to a symmetry group which is completely different
from the case of one-component plasma when there is only one value of q/m. This is the reason
for the oscillatory like generators for one-component plasma in the case of rectilinear motion of
particles to appear, as found by V. Taranov [14]. We easily find that

0 = ∂uτ = ∂uξ = ∂tηα = ∂rηα = ∂uηα = ∂Eηα, 0 = ∂fβ
ηα for α �= β, ζ = λ1E.
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Then, the last two integro-differential equations lead to

0 =
∫

du
[
fα(u3∂uτ − λ1u

3 − u2∂tξ + 3u2ρ + u3∂uρ) + u3ηα

]
,

0 =
∫

du
[
fα(λ1u

2 − u2∂rξ + u3∂rτ − 2uρ − u2∂uρ) + u2ηα

]
.

We assume that the point transformations (3) are analytic functions of the point (t, r, u, fα, ζ).
In general, analyticity with respect to the parameter ε and infinite differentiability with respect
to the point is assumed for Lie groups. However, the latter dependence is in fact also analytic due
to a physical interpretation. Expanding ηα(fα) in the Taylor series, using the generalized mean
value theorem and well known special stationary solutions of the Vlasov–Maxwell equations (5),
which depend only on velocity, we find that the coefficients ηα can depend on fα only linearly
ηα = λ2fα. Thus, we can apply the Lagrange lemma of calculus of variations [13] and obtain
differential equations for integrands.

Solutions of the determining equations lead to the following three generators

G1 = ∂t, G2 = −t∂t − 2r∂r − u∂u + 5
∑
α

fα∂fα ,

G3 = −3t∂t − r∂r + 2u∂u + 5E∂E , (7)

which span the Lie algebra of the group of point symmetry transformations of the Vlasov–
Maxwell equations (5). Non-vanishing commutators between these generators are given by

[G1, G2] = −G1, [G1, G3] = −3G1, [G2, G3] = 0.

The algebra is solvable.
Summing up the Lie series we obtain one-parameter subgroups of the symmetry group of

transformations corresponding to the generators (7). For G1 we have translations in time:

t̃ = t + ε, r̃ = r, ũ = u, f̃α = fα, Ẽ = E.

This symmetry follows from the fact that coefficients of equations (5) do not depend on variable t.
The G2 and G3 generate the following scaling transformations:

t̃ = t exp(−ε), r̃ = r exp(−2ε), ũ = u exp(−ε), f̃α = fα exp(5ε), Ẽ = E,

and

t̃ = t exp(−3ε), r̃ = r exp(−ε), ũ = u exp(2ε), f̃α = fα, Ẽ = E exp(5ε).

The lack of Galilean symmetry and spatial translational symmetry, contrary to the case of one-
dimensional rectilinear motion [6–8], follows from the fact that for radial motion there exists the
distinguished frame of reference connected with the point r = 0.

3 Classification of invariant solutions

Using the adjoint representation we find the optimal system of one-dimensional subalgebras
(see [9, 10]). They are generated by the following operators:

G1, G2, G3, ±G1 − 3G2 + G3, a2G2 + a3G3 for arbitrary a2, a3 �= 0.

Since G2 commutes with G3, we can express the finite transformations corresponding to the
generator a2G2 +a3G3 as compositions of one-dimensional subgroups generated by operators G2
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and G3. Similarly, because [±G1,−3G2 + G3] = 0 the finite transformation corresponding to
±G1 − 3G2 + G3 is a composition of subgroups generated by G1, G2 and G3. Using these
transformations we find invariants built from independent and dependent variables. From these
invariants follow the forms of invariant solutions corresponding to the optimal system. For
example,

eε(±G1−3G2+G3) = eε±G1eε(G3−3G2) = e±εG1e−3εG2eεG3

leads to the following transformation

t̃′ = t′e±ε, r̃ = re5ε, ũ = ue5ε, f̃α = fαe−15ε, Ẽ = Ee5ε,

where t′ = et. Invariants have the forms

re∓5t, ue∓5t, ru−1, fαe±15t, r3fα, u3fα, Ee∓5t, r−1E, u−1E, . . . .

We choose independent invariants (two of them built from independent variables – see [11])

y = re∓5t, z = ue∓5t, fα0 = fαe±15t, E0 = Ee∓5t

and look for solutions in the form

fα = e∓15tfα0

(
re∓5t, ue∓5t

)
, E = e±5tE0

(
re∓5t

)
,

because electric field does not depend on velocity u.
The results of this classification of essentially independent invariant solutions are gathered in

the following table

No Subgroup Form of the solution

1 G1 fα(r, u) , E(r)

2 G2 t−5fα

(
t2r−1, r−1u2

)
, E

(
t2r−1

)
3 G3 fα

(
tr−3, r−1u2

)
, t−1r−2E

(
tr−3

)
4 ±G1 − 3G2 + G3 e∓15tfα

(
re∓5t, ue∓5t

)
, e±5tE

(
re∓5t

)
5 a2G2 + a3G3 r−2ufα

(
t(2a2+a3)r−(a2+3a3), tr−1u

)
,

t−2rE
(
t(2a2+a3)r−(a2+3a3)

)
For example, stationary solutions fα(r, u), E(r) corresponding to G1 are generalizations of

nonlinear electrostatic BGK-waves (Bernstein, Greene, Kruskal [15]). The BGK-solutions are
found by solving an integro-differential equation for electrostatic potential. This equation, which
is obtained [2] by substituting the general solution of the Vlasov equation into the Poisson
equation, is now more complicated due to the term 2Er−1. In the case of vanishing field E = 0
we obtain the equilibrium solutions of the same form as in the rectilinear case: fα(u), where fα

is an arbitrary function.

4 Conclusions

The results obtained in this paper provide a new example of effectiveness of the method pre-
sented in [6–8]. Namely, we have found symmetry groups for Vlasov–Maxwell equations for
spherically symmetric systems of multi-component collisionless plasma. The optimal system
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of one-parameter subgroups is found and classification of corresponding invariant solutions is
carried out.

Spherical symmetry of our problem leads to determining equations, which are different from
the case of one-dimensional rectilinear motion due to higher powers of velocity in the Vlasov–
Maxwell equations.

The symmetry group is narrower, only three-dimensional, than the symmetry group for one-
dimensional rectilinear case [6,7,14]. The lack of the Galilean symmetry and spatial translational
symmetry for the radial case is obvious since for radial motion there exists the distinguished
frame of reference connected with the point r = 0. Other differences are of minor importance.
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