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Construction of Exact Solutions of Diffusion Equation
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New exact solutions for the heat equation ut = uxx +λu
n−1

2 +εu
n+1

2 +cu+du
3−n

2 are found.

1 Introduction

The nonlinear diffusion equations

ut = uxx + b(u)ux + c(u), (1)

where u = u(t, x), b(u), c(u) are smooth functions, and subscripts denote derivatives with respect
to the corresponding variables, play fundamental role in the modelling of various processes of
heat conduction, reaction-diffusions, in mathematical biology, and also in many other spheres.
Equation (1) generalizes a great number of known nonlinear evolution equations. Thus in
particular cases equation (1) is regarded as classical Burgers equation

ut = uxx + λ1uux, (2)

and also as Kolmogorov–Piskunov equation

ut = uxx + f(u), (3)

where f(u) is a sufficiently smooth function.
It is well known, that nonlocal Cole–Hopf transformation

u = −2µ
vx

v
, v = v(t, x) (4)

makes every solution of linear heat conduction equation

vt − µvxx = 0 (5)

correspond to the particular solution of the equation (2). By these means, the transformation (4)
reduces the problem of construction of solutions of the equation (2) to the construction of
solutions of linear equation (5).

The conditional symmetries equation (3) was investigated in [1, 2]. The operators of con-
ditional symmetry of this equation were found only in the case when f(u) is a polynomial of
3rd order. All known solutions of the equation (3) that were successfully obtained by means of
conditional symmetry operators, have such representation

u = k
zx

z
, (6)

where k is constant, and z = z(t, x) is some arbitrary function.
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It should be noticed that group classification of equations (1) was done in [3]. The results
concerning conditional symmetries of equation (1) are mentioned in [4]. In [5] wide classes of
exact solutions of equation (3) are represented.

A goal of this article is to construct the exact solutions of equation

ut = uxx + λu
n−1

2 ux + εu
n+1

2 + cu + du
3−n

2 , (7)

where ε = ±1, c, d are arbitrary real numbers. In case n = 3 we use transformation (3). The
transformation (6) is particular case of transformation

u = k
(zx

z

) 2
n−1

, (8)

that is effective in case of arbitrary n. By using the transformation (8) we reduce the problem
of constructing of exact solutions of equation (7) to the problem of finding function z = z(t, x).
As will be mentioned further, function z = z(t, x) is a solution of system of ordinary differential
equations that is easily solved in many cases.

2 The exact solutions of equation (7) for n = 3

We construct the exact solutions of equation (7) for n = 3

ut = uxx + λuux + εu2 + cu + d. (9)

By substituting (6) into (9), we obtain

(kzxt − kzxxx − ckzx − dz)z2 + kzx(−zt + (3 − λk)zxx − εkzx)z + (−2k + λk2) = 0.

The variable z will be determined from the conditions of zero expressions at z and z2 simulta-
neously. As a result we have

kzxt − kzxxxx − ckzx − dz = 0, (10)
−zt + (3 − λk)zxx − εkzx = 0, (11)
2 − λk = 0. (12)

From equation (11) and (12) we find

zt = zxx − εkzx. (13)

By substituting into equation (10), we obtain

εk2zxx + ckzx + dz = 0. (14)

Thus, the system (10)–(12) is equivalent to the system (12)–(14). This system can be easily
solved. The type of solution depends on roots of characteristic equation

εk2r2 + ckr + d = 0, (15)

that corresponds to linear equation (14). The roots of characteristic equation (15) are 1
km1,

1
km2, where m1 and m2 are the roots quadratic equation

εr2 + cr + d = 0. (16)

We consider tree cases.
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a) The roots are real and different. The general solution of equation (14) has such form

z = µ1(t) exp
(

1
k
m1x

)
+ µ2(t) exp

(
1
k
m1x

)
,

where µ1(t), µ2(t) are functions of t which have to be found. By using equation (13), we obtain

dµ1

dt
=

1
k2

m2
1µ1 − εm1µ1,

dµ2

dt
=

1
k2

m2
2µ2 − εm2µ2.

So,

µ1 = k1 exp
[(

1
k2

m2
1 − εm1

)
t

]
, µ2 = k2 exp

[(
1
k2

m2
2 − εm2

)
t

]
,

and

z = k1 exp
[
1
k
m1x +

(
1
k2

m2
1 − εm1

)
t

]
+ k2 exp

[
1
k
m2x +

(
1
k2

m2
2 − εm2

)
t

]
.

Thus we have found such solution of equation (2)

u =
k1m1 exp

[
λ
2m1x +

(
λ2

4 m2
1 − εm1

)
t
]

+ k2m2 exp
[

λ
2m2x +

(
λ2

4 m2
2 − εm2

)
t
]

k1 exp
[

λ
2m1x +

(
λ2

4 m2
1 − εm1

)
t
]

+ k2 exp
[

λ
2m2x +

(
λ2

4 m2
2 − εm2

)
t
] ,

where k1, k2 are arbitrary real constants, that are not equal to zero simultaneously,

m1 =
−c1 +

√
c2 − 4εd

2ε
, m2 =

−c1 −
√

c2 − 4εd

2ε
.

b) The roots are complex numbers. Let m1 = α + iβ, m2 = α − iβ. In this case we
obtain

z = exp
[
λ

2
dx +

(
λ2

4
(α2 − β2) − εα

)
t

]

×
{

k1 cos
[
λ

2
βx +

(
λ2

2
αβ − εβ

)
t

]
+ k2 sin

[
λ

2
βx +

(
λ2

2
αβ − εβ

)
t

]}
,

where k1, k2 are arbitrary real numbers, that are not equal to zero simultaneously. Thus, the
solution of equation (9) has such form

u =
αk1 + βk2) cos

[
λ
2βx +

(
λ2

2 αβ − εβ
)

t
]

+ (αk2 − βk1) sin
[

λ
2βx +

(
λ2

2 αβ − εβ
)

t
]

k1 cos
[

λ
2βx +

(
λ2

2 αβ − εβ
)

t
]

+ k2 sin
[

λ
2βx +

(
λ2

2 αβ − εβ
)

t
] ,

where

α + iβ =
−c +

√
c2 − 4εd

2ε
, α − iβ =

−c −√
c2 − 4εd

2ε
.

c) The roots are equal. In this case c2 − 4εd = 0, and thus d = c2

4ε , m1 = m2 = − c
2ε .

Function z has such form

z = exp
[
−ελc

4
x +

(
λ2c2

16
+

c

2

)
t

] {
k1x +

(
−ελc

2
k1 − 2ε

λ
k1

)
t + k0

}
,



32 A.F. Barannyk and I.I. Yuryk

where k1, k2 are arbitrary real numbers, that are not equal to zero simultaneously. We obtain
such solution of equation (9)

u =
2
λ

− ελc
4

{
k1x +

(− ελc
2 k1 − 2ε

λ k1

)
t + k0

}
+ k1

k1x +
(− ελc

2 k1 − 2ε
λ k1

)
t + k0

.

In particular, if c = 0 then the solution has such form

u =
2k1

λk1x − 2εk1t + λk0
.

Let us consider two separate cases.
a) c = 0, ε < 0. The equation (16) has two real and different roots

m1 =
√−εd, m2 = −√−εd.

Thus the solution of equation (9) has form

u =
k1m1 exp

[
λm1

2 x +
(
− ελ2d

4 + εm2

)
t
]

+ k2m2 exp
[

λm1
2 x +

(
− ελ2d

4 + εm1

)
t
]

k1 exp
[

λm1
2 x +

(
− ελ2d

4 + εm2

)
t
]

+ k2 exp
[

λm2
2 x +

(
− ελ2d

4 + εm1

)
t
] .

b) c = 0, εd > 0. The equation (16) has two complex roots

m1 = i
√

εd, m2 = −i
√

εd.

Thus the solution of equation (9) has form

u =
k2

√
εd cos

[
λ
2

√
εdx − ε

√
εdt

]
− k1

√
εd sin

[
λ
2

√
εdx − ε

√
εdt

]

k1 cos
[

λ
2

√
εdx − ε

√
εdt

]
+ k2

√
εd sin

[
λ
2

√
εdx − ε

√
εdt

] .

3 The exact solutions of equation (7) for arbitrary n

Let us consider equation (7) for arbitrary n and for d = e

ut = uxx + λu
n−1

2 ux + εu
n+1

2 + cu. (17)

Substituting (8) into equation (17), we obtain such system for finding variable z

2
n − 1

zxzxt − 2(3 − n)
(n − 1)2

z2
xx − 2

n − 1
zxzxx − cz2

x = 0, (18)

zt =
(

n + 3
n − 1

− λk
n−1

2

)
zxx − ε

n − 1
2

k
n−1

2 zx, (19)

k
n−1

2 =
n + 1

λ(n − 1)
. (20)

Solving system (18)–(20), we find such solution for equation (17)

u =
[

n + 1
λ(n − 1)

] 2
n−1 exp

[
−2ελc

n+1x +
(

4λ2c2

(n+1)2
+ c

)
t
]

{
− ε(n+1)

λ(n−1)c exp
[
− ελc(n−1)

n+1 x +
(

2λ2c2

(n+1)2
+ c

2

)
(n − 1)t

]
+ c1

} 2
n−1

,

where c, c2 are arbitrary constants.
This approach can be used for finding the exact solutions of more general type of reaction-

diffusion equation that will be done in the next articles.
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