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The paper concerns the study of rational and logarithmic reductions of the 2D dispersionless
Toda hierarchy of integrable equations. The subject is motivated by important applications
to problems in interface dynamics and statistical physics. We prove the consistency of such
reductions with respect to the “Toda–Krichever” flows of the 2dToda hierarchy constrained
by a string equation.

1 Introduction

Our paper concerns with the study of rational solutions of the dToda hierarchy of integrable
equations. The subject is motivated by numerous important applications to problems of interface
dynamics and statistical physics. We outline them briefly in this section and widen the discussion
in the summary of [1] of the present volume.

The Laplacian growth is a process of propagation of a boundary between two phases on the
plane [6,4]. The both phases are described by scalar harmonic fields (e.g. electrostatic potential,
density or pressure), while the speed of the interface is proportional to the gradient of the
difference between the fields. In the case where the boundary is an analytic curve it is usual
to introduce a time-dependent conformal mapping from the exterior of the unit circle in the
“mathematical” (w) plane z = z(w, x), w = exp(

√−1φ), 0 < φ < 2π to the boundary curve
z = X +

√−1Y on the “physical” plane. It is shown in [6, 7, 4] that the Laplacian growth
problem is equivalent to solution of the following equation

Im
(

∂z

∂φ

∂z̄

∂x

)
= w

(
∂z(w, x)

∂w

∂z̄(1/w, x)
∂x

− ∂z(w, x)
∂x

∂z̄(1/w, x)
∂w

)
= 1, (1)

where bar stands for the complex conjugation (and w̄ = w−1 at the curve). Equation (1) is
called the Laplacian Growth equation [8, 7].

It turns out that (1) plays an essential role in the theory of infinite-dimensional integrable
hierarchies. In particular, the equivalence of the contour dynamics to the dispersionless limit
of the integrable Toda hierarchy constrained by (1) was established in [4]. Equation (1) may
be interpreted as a constraint on an infinite commuting set of dynamical systems defined in
the space of one-parameter families of conformal maps. This constraint characterizes the
fixed points of an “additional symmetry” [5] in which x is interpreted as the flow parame-
ter.

In what follows, we consider finite-dimensional solutions of (1) in a context of 2dToda hie-
rarchy of integrable equations. We study formal algebraic solutions of the problem, forgetting
about complex structure and treating z, z̄ as independent functions, and w as a formal va-
riable.
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2 Reductions of 2dToda hierarchy constrained
by string equation

2.1 2dToda hierarchy and string equation

The dToda hierarchy is defined in terms of two functions z(w, x) and z̄(w−1, x) of the form:

z(w, x) = r(x)w +
∞∑

k=0

uk(x)w−k, z̄
(
w−1, x

)
= r(x)w−1 +

∞∑
k=0

ūk(x)wk, (2)

where the coefficients r(x), uk(x), ūk(x) are viewed as coordinate functionals on the phase space
consisting of such pairs z(w, x), z̄(w−1, x). The dToda flow equations are

∂tkz = {Hk, z}, ∂t̄k z̄ = {H̄k, z̄}, ∂tk z̄ = {Hk, z̄}, ∂t̄kz = {H̄k, z}, (3)

Hk = (zk)+ + 1/2
(
zk

)
0
, H̄k =

(
z̄k

)
− + 1/2

(
z̄k

)
0

(4)

with subscripts ±, 0 denoting the negative/positive and zero parts of the formal Laurent expan-
sion in w. The Poisson–Lax bracket notation here stays for

{f, g} := w
∂f

∂w

∂g

∂x
− w

∂f

∂x

∂g

∂w
. (5)

The dispersionless limit of the “string equation” is the constraint
{
z(w, x), z̄

(
w−1, x

)}
= 1. (6)

Equation (6) is invariant under (3) and so defines an invariant under the dToda flows (3) manifold
and a reduction of the full dToda hierarchy. The reduction of the dToda hierarchy by the string
equation is still an infinite, compatible set of infinite-dimensional dynamical systems. In what
follows we are interested in further “functional” reductions where z, z̄ are polynomial, rational
or logarithmic functions of w. As we show below such reductions are consistent with 2D dToda
flows (3) if the string equation (6) holds. Thus, for the consistency we need a double (“functional”
plus “string”) reduction, which defines a finite-dimensional invariant sub-manifold on the phase
space of general 2d Toda hierarchy.

2.2 Polynomial reductions

We begin with polynomial reductions of the 2D Toda chain

z(w) = rw +
0∑

i=−N

uiw
i, z̄

(
w−1

)
= rw−1 +

N∑
i=0

ūiw
i (7)

constrained by the string equation (6). The following proposition states consistency of the
polynomial reductions under the Toda flows:

Proposition 1. If the string equation (6) holds, then (7) belong to a manifold invariant under
the 2dToda flows ∂/∂ti, ∂/∂t̄i, 0 < i < N + 2 (3). This manifold has dimension 2N + 3 with
r = r(T ), u = u(T ), ū = ū(T ), T = {ti, t̄i}, i = 1, . . . , 2N + 1 being solution of the dynamical
system induced by 2dToda flows (3).

Proof. We must prove that z remains of the form (7) under the flows generated by Hk, H̄k

provided the string equation (6) holds. (The proof for z̄ is similar).
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1. First we proceed with the flows generated by Hk. The lowest degree of z is −N . Since

Hk =
(
zk

)
+

+ 1/2
(
zk

)
0

= hkw
k + hk−1w

k−1 + · · · + h0 (8)

is a Laurent polynomial of positive degree, the lowest degree term in the bracket {z, Hk} is not
less than −N . Therefore the lowest degree term in z remains ≥ −N under the flows. On the
other hand, the complement zk−Hk of (8) is a polynomial in 1/w and so, {Hk, z} = −{zk−Hk, z}
is a Laurent polynomial with the highest degree in w not exceeding 1. Therefore the highest
degree term in z remains ≤ 1.

2. Unlike the evolution under the Hk-flows, the form-invariance (7) of z under the flows
generated by the H̄k’s requires extra restrictions on the derivatives ∂tkui, stemming from the
string equation. Since H̄k = (z̄k)− + 1/2(z̄k)0 is a Laurent polynomial of non-positive degree,
we again see that the highest degree in {z, Hk} is 1, and hence this degree cannot increase
under the flow. However, since H̄k = z̄k − ((z̄k)+ + 1/2(z̄k)0) is the difference between z̄k and
a polynomial of nonnegative degree, {H̄k, z} = {z̄k, z} − {((z̄k)+ + 1/2(z̄k)0), z}, the second
bracket in this expression has lowest degree ≥ −N , but not, in general, the first. However, since
{z̄k, z} = kz̄k−1{z̄, z}, imposing the extra restriction (6) (string equation), again implies that
the lowest degree term in this bracket does not exceed −N , provided k ≤ N + 1. �

2.3 Rational reductions

Consider now the space of rational functions z(w) and z̄(w) of the form

z(w) =
qN+1(w)
pN (w)

=
rwN+1 +

N∑
i=0

aiw
i

wN +
N−1∑
i=0

biwi

, (9)

z̄(w−1) =
q̄N+1(w−1)
p̄N (w−1)

=
rw−(N+1) +

N∑
i=0

āiw
−i

w−N +
N−1∑
i=0

b̄iw−i

, (10)

where the 4N + 3 coefficients r, ai, āi, bi, b̄i are functions of x. The following Lemma states
onvariance of such rational reductions of z(w) and z̄(w) under the dToda flows.

Lemma 1. The space of functions z(w) of the form (9) is invariant under the dToda flows ∂ti,
i > 0. and, similarly, the space of functions z̄(w−1) of the form (10) is invariant under the ∂t̄i,
i > 0 flows.

Proof. Consider the flows generated by Hk. The proof for z̄ is similar. Since

Hk =
(
zk

)
+

+ 1/2
(
zk

)
0

(11)

is a polynomial of nonnegative degree in w, its complement zk − Hk is a polynomial in 1/w.
Then the Laurent expansion of brackets (5) {Hk, z} = −{zk − Hk, z} around infinity has the
following form

{Hk, z} = k1(T )w + k0(T ) + k−1(T )w−1 + · · · . (12)

While the Lax bracket (5) implies that it is rational of the form {Hk, z} = Q(w)/pN (w)2, it
follows from (12) that the highest degree in polynomial Q(w) does not exceed 2N + 1. On
the other hand, since it is clear that ∂tkz = P (w)/pN

2(w), P (w) = pN∂tkqN+1 − qN+1∂tkpN ,
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where the highest degree in the polynomial P (w) also does not exceed 2N +1, we may therefore
equate to zero the coefficients of polynomial P (w)−Q(w), and thereby get a system of differential
equations for r, a, b. The number of equations obtained is 2N + 2. Thus we get a compatible
system of differential equations for 2N + 2 unknowns r, a, b. �

The consistency of rational solutions for the whole Toda hierarchy requires some extra re-
strictions. This is the point where the string equation plays an essential role.

Proposition 2. The string equation (6) is a sufficient condition for the rational functions z(w)
and z̄(w) (9), (10) to belong to a manifold, which is only invariant under the first two-Toda
flows ∂/∂t1, ∂/∂t̄1 (see (3)).

Proof is by argument similar to those used for Lemma (1) and Proposition (1).

So, there are only two flows compatible with the rational ansatz. In fact, we could not
expect more invariant flows associated to the two simple poles at w = 0 and w = ∞. In the
polynomial case, the number of invariant flows was equal to the number of variables (polynomial
coefficients), since one can associate n invariant flows to the pole of the n th order, and poles
at zero and infinity are immovable. Below, we introduce additional flows, related to movable
singularities of z(w) and z̄(w−1) using a result by Krichever.

2.4 Additional flows for rational reductions of the dKP hierarchy

As mentioned in [2], on the phase space of extended Benney systems, i.e. rational dKP reductions
admitting poles of arbitrary degree, there arise some new flows related to the pole structure of
the corresponding maps. These additional flows were introduced by Krichever (see [3]).

Consider a representation of rational maps in pole-residue form for simple poles along with
a half (1dToda or dKP) of flows. In the Takasaki gauge [9, 2]

z(w) = w + u0 +
N∑

α=1

uα

w − wα
. (13)

The new flows attached to the poles are defined as before

∂tk,α
z = {Bk,α, z}, α = ∞, 1, 2, . . . , k = 0, 1, 2, . . . (14)

with the evolution operators being associated with the pole structure of z as follows :

Bk,∞ =
(
z(w)k

)
≥0

for an immovable pole at infinity, while for each finite-distance pole there appear additional
flows with evolution operators as follows:

Bk,α =
(
z(w)k

)
α
, B0,α = log(wα − w).

Here, z(w)α stays for the negative part of a formal expansion of z(w) near its poles wα:

f(w)α =
∑
i>0

fi

(w − wα)i
if f =

∑
i∈Z

fi

(w − wα)i
. (15)

These additional flows commute amongst themselves and with the ordinary (associated with
poles at infinity) 1dToda or dKP flows [3].
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2.5 Additional invariant flows of the 2dToda system

The dKP hierarchy can be extended to the 2dToda system by introducing an infinite set of
t̄-flows associated to the poles at w = 0 and w = ∞, similarly the Krichever–Benney system has
the following 2dToda extension:

z(w) = rw + u0 +
N∑

α=1

uα

w − wα
, z̄(1/w) = r/w + ū0 +

N∑
β=1

ūβ

1/w − w̄β
, (16)

∂tk,α
z = {Hk,α, z}, ∂t̄k,β

z̄ = {H̄k,β , z̄}, ∂tk,α
z̄ = {Hk,α, z̄}, ∂t̄k,β

z = {H̄k,β , z}. (17)

In (17) we transformed the flows from the Takasaki to the Lax–Sato gauge needed for our
purposes. The relation between the evolution operators in different gauges is found to be:

Hk,α(w) = Bk,α(w) − 1
2Bk,α(w = 0), H̄k,β(y) = B̄k,β(y) − 1

2B̄k,β(y = 0), (18)

where

Bk,∞(w) = (z(w)k)≥0, B0,α = log (r(wα − w)) , Bk,α(w) = (z(w)k)α,

B̄k,∞(y) = (z̄(y)k)≥0, B̄0,β = log (r(w̄β − y)) , B̄k,β(y) = (z̄(y)k)β , y = 1/w. (19)

Lemma 2. All vector fields attached to the pole structure of rational maps formally commute,
i.e. the introduced evolution operators (18) satisfy zero-curvature conditions.

It is important to note that in the system (17), the equations for the flows ∂tk z̄, ∂t̄kz do not
make a sense fully, since these flows do not preserve the rational ansatz for z, z̄ in (13) and (16)
until the additional reduction is made. As we have seen before, to be consistent, these systems
must be restricted by a string equation, which makes (17) a finite-dimensional dynamical system.

Proposition 3. The 4N + 2 commuting Toda–Krichever flows

∂τiz = {hi, z} , ∂τ̄iz =
{
h̄i, z

}
,

∂τi z̄ = {hi, z̄} , ∂τ̄i z̄ =
{
h̄i, z̄

}
, i = 0, . . . , 2N, (20)

where

h0 = H1,∞ = rw + u0/2, h̄0 = H̄1,∞ = r/w + ū0/2,

h2i−1 = H1,i =
ui

w − wi
+

ui

2wi
, h̄2i−1 = H̄1,i =

ūi

w̄i − 1/w
+

1
2
ūi/w̄i, (21)

h2i = H0,i = log(wi − w) + 1/2 log(r/wi), h̄2i = H̄0,i = log(w̄i − 1/w) + 1/2 log(r/w̄i)

and

τ0 = t1,∞, τ2i−1 = t1,i, τ2i = t0,i, τ̄0 = t̄1,∞, τ̄2i−1 = t̄1,i, τ̄2i = t̄0,i (22)

preserve the rational form of z(w) (13) and z̄(1/w) (16) (or equally (10), (9)) provided the string
equation (6) holds.

As in the polynomial case, the total number of invariant flows equals the dimension of the
dynamical system minus one. In what follows we show that these flows are Hamiltonian. Since
the dimension of the phase space is odd and is equal to 4N + 3, it is, in fact a Poisson manifold
where the dimension of the symplectic leaf is 4N + 2. This last number is exactly equal to the
number of commuting Toda–Krichever flows.

Now we conjecture that the stated result is true for the more general setting. We intro-
duce a logarithmic ansatz for the 2dToda hierarchy and prove Lemma 2 and Proposition 3 for
logarithms followed by a limiting procedure.



Finite-Dimensional Reductions of 2D dToda 435

2.6 Logarithmic flows

As was mentioned above, it is easier to prove consistency of the rational ansatz with the dynamics
of the 2dToda system using the more general Logarithmic solutions. Let us set:

z = r(x)w + u(x) +
n+1∑
i=1

ai log(wi(x) − w),
n+1∑
i=1

ai = 0,

z̄ = r(x)w−1 + ū(x) +
n+1∑
i=1

āi log
(
w̄i(x) − w−1

)
,

n+1∑
i=1

āi = 0, i = 1, . . . , n + 1, (23)

where ai, āi are arbitrary constants, subject to conditions
n+1∑
i=1

ai = 0,
n+1∑
i=1

āi = 0 which ensure

the absence of logarithmic singularities at infinity. For the introduced ansatz (23) we claim the
following result:

Proposition 4. Let us generalize the evolution operators to be as follows:

H0 = r(x)w + 1
2u(x), H̄0 = r̄(x)w−1 + 1

2 ū(x),
Hi = log(wi(x) − w) + 1

2 log(r(x)/wi(x)),

H̄i = log
(
w̄i(x) − w−1

)
+ 1

2 log(r(x)/w̄i(x)), i = 1, . . . , n + 1. (24)

Then, the 2n + 4 flows generated by the Lax equations

∂τiz = {Hi, z} , ∂τ̄iz =
{H̄i, z

}
,

∂τi z̄ = {Hi, z̄} , ∂τ̄i z̄ =
{H̄i, z̄

}
, i = 0, . . . , n + 1 (25)

commute. They preserve the logarithmic ansatz (23) provided the string equation (6) holds.

In other words, the 2dToda flows are tangent to the manifold of logarithmic functions if the
string condition is imposed and we again have 2n+4 flows leaving invariant a 2n+5 dimensional
sub-manifold of the 2dToda system.

It is easier to prove the proposition in the Takasaki gauge. For this purpose we give the
transition formulas between different gauges before the proof. For the general 2dToda hierarchy,
the Lax functions z(g) and z̄(g) in an arbitrary g-gauge are expressed through the Lax–Sato
gauge which corresponds to g = 0, z = z(0), z̄ = z̄(0) as follows

z(g)(w) = z
(
w/r2g

)
= r(x)1−2gw +

0∑
i=−∞

u
(g)
i (x)wi,

z̄(g)
(
w−1

)
= z̄

(
r2g/w

)
= r(x)1+2gw +

∞∑
i=0

ū
(g)
i (x)wi

while, (omitting evident subscripts)

H(g)(w) = B(g)(w) − (
1
2 − g

)
B(g)(w = 0),

H̄(g)(1/w) = B̄(g)(1/w) − (
1
2 + g

)
B̄(g)(1/w = 0). (26)

Here, B(g) and B̄(g) are specified similarly to those in (19). In particular, in the Takasaki gauge
g = 1/2 (below we omit superscripts (1/2))

z = w + u(x) +
n+1∑
i=1

ai log(wi(x) − w),
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z̄ = r(x)2w−1 + ū(x) +
n+1∑
i=1

āi log
(
w̄i(x) − w−1

)
, (27)

H0 = w + u(x), H̄0 = r(x)2w−1,

Hi = log(wi(x) − w), H̄i = log
(
w̄i(x) − w−1

)
+ log(wi(x)/r(x)). (28)

Proof of Proposition 4.
1. Formal commutativity of flows. We demonstrate the commutativity of ∂τiz, and ∂τjz. The

proof is similar for the rest of the flows.
The commutativity of the flows is equivalent to the zero-curvature equation

{Hi,Hj} − ∂Hj

∂τi
+

∂Hi

∂τj
= 0. (29)

Equations (28), (27) and (25) imply that

∂Hj

∂τi
=

∂τiwj

wj − w
=

1
aj

(∂τiz)j =
1
aj

{Hi, z}j ,

where subscript j stands for the singular part of the expansion around wj (see (15)). Thus
instead of the lhs of (29) we have

{Hi,Hj} − 1
aj

{Hi,Hj}j +
1
ai
{Hi,Hj}i

which is zero by direct calculation applying (28) and (5). This proves the formal commutativity
of the flows.

2. Consistency of (27) with equations of motion (25). In a way similar to that of the polyno-
mial and rational cases the consistency of the half-flows ∂τiz, and ∂τ̄i z̄ for logarithmic solutions
is automatic and does not require any extra restrictions on the coefficients (the proof is also
similar). In the logarithmic ansatz the main obstacle appears for the flows ∂τi z̄ and ∂τ̄iz. We
prove the consistency for ∂τ̄iz. The proof for ∂τi z̄ is similar.

Differentiating z directly with respect to τ̄i and using the equation of motion (25) we get

∂τ̄iz = ∂τ̄iu +
n+1∑
j=1

ai∂τ̄iwj

w − wj
= {H̄i, z}.

The lhs of the equation contains only singularities of z. Using definition (5) and equations (27),
(28), we see that the rhs contains both singularities of z and one singularity of H̄i. In order
for the equation of motion to be consistent with the logarithmic ansatz, the rhs, {H̄i, z}, must
contain the same singularities as those in the lhs, i.e. it must not contain a singularity of H̄i at
w = 1/w̄i.

Let us exploit the fact that in the Takasaki gauge (27), (28), z and z̄ can be represented as
sums over the corresponding H:

z = H0 +
n+1∑
i=1

aiHi, z̄ = H̄0 +
n+1∑
i=1

āiH̄i + f(r, w1, . . . , wn+1), (30)

where f is a w-independent function. Note that the conditions
n+1∑
i=1

ai = 0,
n+1∑
i=1

āi = 0 of

Proposition 4 ensure that there are no logarithmic singularities at infinity.
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Now, using (30) we obtain the following expression

āi{H̄i, z} =
{

z̄ − f −
∑
j �=i

ājH̄j , z
}

= {z̄, z} − {f, z} −
∑
j �=i

āj{H̄j , z}.

The term
∑
j �=i

āj{H̄j , z} of the rhs of the last expression does not contain singularities of H̄i since

it does not contain the index i in the sum. The next term {f, z} does not contain them either,
since f is independent of w. The only term which may contain undesired singularities is {z̄, z},
however the string equation (6) holds and therefore {H̄i, z} is free of singularities of z̄. Thus the
equation of motion is consistent with the logarithmic ansatz due to the string equation. �

Corollary 1. The consistency of the rational ansatz follows from the consistency of the loga-
rithmic ansatz. (Proposition 3 is a consequence of Proposition 4).

Proof. Choosing n = 2N − 1 and substituting the values

a2i−1 = 1/ε, a2i = −1/ε, w2i = w2i−1 + εui,

ā2i−1 = 1/ε, ā2i = −1/ε, w̄2i = w̄2i−1 + εūi (31)

for z and z̄ into (23) we get rational solutions (16), (13) in the ε → 0 limit.
The Hamiltonians are then related as follows:

h0 = lim
ε=0

H0, h̄0 = lim
ε=0

H̄0,

h2i−1 = lim
ε=0

1
ε
(H2i −H2i−1), h̄2i = lim

ε=0

1
ε
(H̄2i − H̄2i−1),

h2i = lim
ε=0

H2i−1, h̄2i−1 = lim
ε=0

H̄2i−1. �

Thus we have obtained a rational ansatz as a limiting case of the logarithmic ansatz, merging
pairs of logarithmic singularities together, in which case they become simple poles. In a similar
way one may deduce any kind of rational maps containing a combination of poles of any degrees
absorbing different numbers of logarithmic singularities.
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