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For the system of two-dimensional plasticity equations with the help of conservation laws ba-
sic boundary problems are solved. We have considered solutions of some concrete boundary
problems. Using the symmetry transformations, from the well known Prandtle’s solution
we deduce some new solutions, describing the pressing of a layer between two rugged slabs.
Also, some new properties of characteristics of the plane plasticity are shown.

1 Introduction

Among hyperbolic systems of nonlinear equations with partial derivatives the systems of the
quasilinear equations of two independent variables are most investigated. These systems de-
scribe, in particular, unsteady one-dimensional and supersonic two-dimensional stationary flows
of compressible gases and liquids, two-dimensional deformed plastic state of a continuous medium
and so on. A lot of them are reduced to a hyperbolic system of homogeneous quasilinear equa-
tions

ux +A(u, v)uy = 0,
vx +B(u, v)vy = 0, (1)

where u = u(x, y), v = v(x, y), an indices below mean derivation with respect to the correspond-
ing variables.

In the Section 2 we describe a method of the analytical solving of boundary-value problems
for the system (1). This method is based on the conservations laws that allow us to consider
linearization of problems without nonsingular transformations and to obtain exact solutions of
boundary-value problems in explicit form. In the Section 3 we consider some concrete systems.

Other way to solve some boundary-value problems is using of symmetries of equations. The
theory of symmetries is widely used in investigation and in resolution of differential equations.
A group of symmetries allows to find exact solutions of differential equations and to classify
PDE’s by admitting groups.

Symmetries admitted by the system of PDE’s have a great property: under its action any
solutions of the system are transformed to the solutions of this system. This property allows
to construct new solutions without integrating of the given system, only by means of group
transformations of known solutions. In such a way some of interesting results were obtained [1].
Note that this way is effective only if we have a sufficiently rich group of point transformations.
In the Section 4 Prandtl’s solution was transformed. As a result we obtained a lot of exact
solutions. We selected only restricted ones along Oy-axis ones and these solutions can be used
for the solving of boundary-value problems for compression of a plastic layer by rigid parallel
slabs. We can hope that with the help of these solutions it will be possible to describe not only
compression of the thin layers, but the thick ones too.



232 S.I. Senashov and A.N. Yakhno

2 Conservation laws

Let us set Cauchy’s problem: in some neighborhood of an arc a ≤ τ ≤ b of a smooth curve

L = {(x, y) : x = x(τ), y = y(τ), τ ∈ [a, b]}

in the plane xOy it is required to find a solution of the system (1) that takes given values on L

u(x, y)|L = u(x(τ), y(τ)) = u0(τ), v(x, y)|L = v(x(τ), y(τ)) = v0(τ).

The characteristics equations of the system (1) look like

dx

dy
= A,

dx

dy
= B, (2)

with the relations on the characteristics u = u0, v = v0 respectively.
We search a conservation law of the set of equations (1) in the form of a relation

Cx +Dy = 0, (3)

where C = C(u, v), D = D(u, v), which should vanish only on the solutions of the system (1):

Cuux + Cvvx +Duuy +Dvvy = −ACuuy −BCvvy +Duuy +Dvvy = 0,

hence

Du −ACu = 0, Dv −BCv = 0. (4)

The equation (3), if conditions of Green’s theorem are satisfied, is equivalent to a relation∮
Γ
−Cdy +Ddx = 0,

where Γ is an arbitrary closed contour.
In the plane xOy we will consider the closed path MNK, where M(xm(a), ym(a)), N(xn(b),

yn(b)) ∈ L, K(xk, yk) is the point of an intersection of characteristics v = v0, u = u0, drawn
through the points M , N respectively.

Then,∮
MNK

−Cdy +Ddx =
∫

MN
Ddx− Cdy +

∫
NK

Ddx− Cdy +
∫

KM
Ddx− Cdy = 0. (5)

Taking into account the expressions (2)∫
NK

Ddx− Cdy =
∫

NK
(D −AC)dx = x(D −AC)

∣∣xk

xn
−

∫
NK

x∂v(D −AC)dv.

Similarly,∫
KM

Ddx− Cdy =
∫

KM
(D −BC)dx = x(D −BC)

∣∣xm

xk
−

∫
KM

x∂u(D −BC)du.

Let us assume

∂v

[
(D −AC)|u=u0(x(b),y(b))

]
= 0, ∂u

[
(D −BC)|v=v0(x(a),y(a))

]
= 0. (6)
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Let us denote

φ(u, v) = D −AC, ψ(u, v) = D −BC.

Then

D = (Aψ −Bφ)/(A−B), C = (ψ − φ)/(A−B),

where A �= B, because the considered system (1) is the hyperbolic one and has two different
families of characteristics.

In the new variables, the system (4) has the form

φu +K1(ψ − φ) = 0,
ψv +K2(ψ − φ) = 0, (7)

where K1 = Au/(A−B), K2 = Bv/(A−B).
We will write the conditions (6) as follows

φ|u=u0 = const1 = 1, ψ|v=v0 = const2 = 0. (8)

Coming back to (5) and taking into account (8), we obtain∫
MN

Ddx− Cdy = −(x(D −AC)|xk
xn

+ x(D −BC)|xm
xk

)

= −(xkφ|u=u0,v=v0 − xnφ|u=u0 + xmψ|v=v0 − xkψ|u=u0,v=v0) = xn − xk. (9)

If we find a solution of the linear system (7) satisfying to the boundary conditions (8), then we
will determine the coordinate xk from the equation (9).

On the other hand, for y-coordinate∫
NK

Ddx− Cdy =
∫

NK

(
D

A
− C

)
dy = y

φ

A

∣∣∣∣
yk

yn

−
∫

NK
y∂v

(
φ

A

)
dv.

Similarly,∫
KM

Ddx− Cdy =
∫

KM

(
D

B
− C

)
dy = y

ψ

B

∣∣∣∣
ym

yk

−
∫

KM
y∂u

(
ψ

B

)
du.

Let us assume

∂v

[
φ

A

∣∣∣∣
u=u0(x(b),y(b))

]
= 0, ∂u

[
ψ

B

∣∣∣∣
v=v0(x(a),y(a))

]
= 0. (10)

We can write the conditions (10) as follows

φ|u=u0 = A(u0, v), ψ|v=v0 = 0. (11)

From (5), taking into account (10), we have∫
MN

Ddx− Cdy = −yk
φ

A

∣∣∣∣
u=u0,v=v0

+ yn
φ

A

∣∣∣∣
u=u0

− ym
ψ

B

∣∣∣∣
v=v0

+ yk
ψ

B

∣∣∣∣
u=u0,v=v0

= yn − yk. (12)

The solution of the problem (7), (11) makes possible to find the coordinate yk from the equa-
tion (12). Thus, we will determine the coordinates of the point K, where the values of the
functions u, v can be reconstructed.
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3 Examples of application of the method

1. In the work [2] the solution was found that takes given values on L

σ(x, y)|L = σ0, θ(x, y)|L = θ0

for the initial problem for the system of 2-dimensional plasticity under von Mises condition

σx − 2k (θx cos 2θ + θy sin 2θ) = 0,
σy − 2k (θx sin 2θ − θy cos 2θ) = 0, (13)

where σ is a hydrostatic pressure, θ is an angle between the first main direction of a stress tensor
and the ox-axis, k is a constant of plasticity. This system in the form (1) is

ξx + ξy tan θ = 0, ηx − ηy cot θ = 0,

where 2θ = η − ξ, σ = k(η + ξ). Solution of problem (7), (8) has the form: φ = ρ/ cos θ,
ψ = 2ρξ/ sin θ, where

ρ(ξ, η) = R(ξ, ξ0, η, η0) cos
(
η0 − ξ0

2

)
− 1

2

∫ η

η0

R(ξ, ξ0, η, τ) sin
(
τ − ξ0

2

)
dτ.

Accordingly, the solution of the problem (7), (11) is

ρ(ξ, η) = R(ξ, ξ0, η, η0) sin
(
η0 − ξ0

2

)
+

1
2

∫ η

η0

R(ξ, ξ0, η, τ) cos
(
τ − ξ0

2

)
dτ,

where R(ξ, η, ξ0, η0) = I0

(√
(ξ − ξ0)(η − η0)

)
is Bessel function of a zero order of imaginary

argument, I0(0) = 1, I0′(0) = 0.
2. The generalization of (13) is a system of ideal plasticity equations under Coulomb’s

plasticity condition that has the form:

σx(1 + cos 2α cos 2Θ) + σy cos 2α sin 2Θ = 2(σ cos 2α+ k sin 2α)(Θx sin 2Θ − Θy cos 2Θ),
σx cos 2α sin 2Θ + σy(1 − cos 2α cos 2Θ) = −2(σ cos 2α+ k sin 2α)(Θx cos 2Θ + Θy sin 2Θ),

where π/2 − 2α is a constant angle of internal friction, Θ = θ + π/4. If α = π/4, then we have
the system (13). This system in the form (1) is:

ξx + ξy tan(Θ − α) = 0, ηx − ηy tan(Θ + α) = 0,

where ξ = 1
2 tan 2α ln(σ cot 2α+k)−Θ, η = 1

2 tan 2α ln(σ cot 2α+k)+Θ. Solution of problem (7),
(8) has a form [3]: φ = γ(−ξ,−η)V (ξ, η)/ cos(Θ − α), γ(ξ, η) = exp(−(ξ + η)/2 cot 2α), where:

V = γ(ξ0, η0)R(ξ, ξ0, η, η0) cos ((η0 − ξ0)/2 − α) (14)

− 1
2

∫ η

η0

R(ξ, ξ0, η, τ)γ(ξ0, τ) [sin ((τ − ξ0)/2 − α) − cot 2α cos ((τ − ξ0)/2 − α)] dτ.

The solution of the problem (7), (11) is

V = γ(ξ0, η0)R(ξ, ξ0, η, η0) sin ((η0 − ξ0)/2 − α) (15)

− 1
2

∫ η

η0

R(ξ, ξ0, η, τ)γ(ξ0, τ) [cot 2α sin ((τ − ξ0)/2 − α) − cos ((τ − ξ0)/2 − α)] dτ,

R(ξ, η, ξ0, η0) = I0

(√
(ξ − ξ0)(η − η0)/ sin 2α

)
. From the equation (9) taking into account (14)

we will find a coordinate xk. Using (15), from the equations (12) we will obtain a coordinate yk.
Thus, we have determined a point K, in which the values of functions ξ, η are reconstructed.
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4 Reproduction of Prandle’s solution

Let us consider the system (13) that has two families of characteristics (in the theory of plasticity
they are named slide lines) with the following equations and relations along characteristics:

dy

dx
= tan θ,

σ

2k
− θ = c1,

dy

dx
= − cot θ,

σ

2k
+ θ = c2.

This system admits the infinite group of symmetries [4]. Its point subgroup is generated by
following generators:

X1 = ∂x, X2 = ∂y, X3 = x∂x + y∂y, X4 = −x∂y + y∂x + ∂θ,

X5 = ∂σ, X6 = ξ1∂x + ξ2∂y + 4kθ∂σ − σ

k
∂θ, X = ξ∂x + η∂y, (16)

where

ξ1 = −x cos 2θ − y sin 2θ − y
σ

k
, ξ2 = y cos 2θ − x sin 2θ + x

σ

k
,

and (ξ, η) is an arbitrary solution of the following lineal system of equations:

ξθ − 2k (ξσ cos 2θ + ησ sin 2θ) = 0,
ηθ − 2k (ξσ sin 2θ − ησ cos 2θ) = 0, (17)

Transformations, which correspond to any generator of (16), convert the system (13) to itself.
Thus, for the generator X we have transformations of independent variables:

x′ = x+ aξ, y′ = y + aη, (18)

where a is an arbitrary parameter, (ξ, η) is an arbitrary solution of (17). As X is an admitted
generator, the transformations (18) do not change the form of the system (13). Note that we have
shown the variables that are changed under this transformation, other variables are omitted.

Under the action of the symmetry group, any solution of the system (13) is transformed to
the solution of this system. Furthermore, it is easy to demonstrate

Proposition 1. The characteristics of the system (13) are transformed to the characteristics of
this system under the action of symmetry group (16).

The system (13) is being investigated for more than 100 years, but there are a few of its
exact solutions. Certainly, one of the well-known solutions was constructed by Prandtl [5]. Let
us write this solution in the form

σ = −kx+ k
(
1 − y2

) 1
2 , 2θ = arccos y. (19)

From proposition, in particular, it is follows that for the construction of slide lines we should
substitute the characteristic relations to the solution. Let us substitute the relation along the
first characteristic σ/(2k) − θ = c1 to the solution (19). We obtain the equation of the first
family of slide lines:

x = −2θ + sin 2θ +K1, y = cos 2θ.

By analogy, we obtain the second family of slide lines with relation σ/(2k) + θ = c2:

x = 2θ + sin 2θ +K2, y = cos 2θ.
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Under the transformations (18), Prandtl’s solution will transform to the following one:

σ = −kx+ akξ + k sin 2θ, y = cos 2θ + aη, (20)

and the slide lines will have the form:

x = ∓2θ + aξ + sin 2θ +Ki, y = cos 2θ + aη, i = 1, 2.

Therefore, in order to obtain new solutions, we have to find some solutions of the system (17).
This is the system of PDE’s of the first order with the variable coefficients, and it is possible to
find solutions in the form of series:

ξ =
∞∑
i=1

[fi(σ) cos(iθ) + gi(σ) sin(iθ)] , η =
∞∑
i=1

[Fi(σ) cos(iθ) +Gi(σ) sin(iθ)] ,

where fi(σ), gi(σ), Fi(σ), Gi(σ) are the functions, obtained as solutions of a system of ODE’s.
This way can be successful, but it is difficult to give an analysis of results and use them for
practical goals. Therefore, we can find some solutions of (17) in a simpler way, which can be
used in practice. Solutions of the system (17) we can find in the forms:

ξ = ασ + F (θ), η = βσ +G(θ), (21)

ξ = f(θ) exp
( σ

2k

)
, η = g(θ) exp

( σ

2k

)
, (22)

ξ = α(θ) sin
σ

2k
+ β(θ) cos

σ

2k
, η = F (θ) sin

σ

2k
+G(θ) cos

σ

2k
, (23)

ξ = α(θ) sinh
σ

2k
+ β(θ) cosh

σ

2k
, η = F (θ) sinh

σ

2k
+G(θ) cosh

σ

2k
, (24)

where functions f , g, α, β, F , G are determined as a solution of corresponding systems of ODEs.
It is easy to see that under the transformation (21) the Prandtl’s solutions is transformed

into the solution of the same form (there is no new solution).
Under the transformations (22), (24) the solution will be transformed to the non-restricted

ones along the oy-axis, hence we do not consider solutions of this form in this article.
Let us consider the action of ultimate transformation (23) to the slide lines. Substituting (23)

to the system (17) we have the system of equations for a determination of functions α, β, F , G

α′ + β cos 2θ +G sin 2θ = 0, β′ − α cos 2θ − F sin 2θ = 0,
F ′ + β sin 2θ −G cos 2θ = 0, G′ − α sin 2θ + F cos 2θ = 0. (25)

Let us derive each of the equations (25) with respect to θ. Then, according to (25), we obtain
the equations:

α′′ + α+ 2F ′ = 0, F ′′ + F − 2α′ = 0,
β′′ + β + 2G′ = 0, G′′ +G− 2β′ = 0, (26)

Let us find the solution of the first system of (26) in the form

α = Ceλθ, F = Deλθ, C,D = const.

Therefore, for the determination of λ, C, D we have the algebraic equations

Cλ2 + C + 2Dλ = 0, Dλ2 +D − 2Cλ = 0.
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Hence C = ±iD, λ1,2 = i(1 ±√
2), i2 = −1. Then, a real solution for α, F has the form

α = C1 cos
(
1 ±

√
2

)
θ − C2 sin

(
1 ±

√
2

)
θ,

F = C1 sin
(
1 ±

√
2

)
θ + C2 cos

(
1 ±

√
2

)
θ,

where C1, C2 are arbitrary constants.
Then, solution for β, G of the second system (26), according to (25) will take the form:

β =
(
1 ±

√
2

) (
C2 cos

(
1 ∓

√
2

)
θ − C1 sin

(
1 ∓

√
2

)
θ
)
,

G =
(
1 ±

√
2

) (
C2 sin

(
1 ∓

√
2

)
θ + C1 cos

(
1 ∓

√
2

)
θ
)

For a simplicity let us C2 = 0, and let us take the lower sign, then (23) we can write down in
the form:

ξ = cos
(
1 −

√
2

)
θ sin

σ

2k
− (

1 −
√

2
)
sin

(
1 +

√
2

)
θ cos

σ

2k
,

η = sin
(
1 −

√
2

)
θ sin

σ

2k
+

(
1 −

√
2

)
cos

(
1 +

√
2

)
θ cos

σ

2k
.

The transformations of the slide lines can be written as:

x = ∓2θ + a
[
cos

(
1 −

√
2

)
θ sin(±θ + ci) −

(
1 −

√
2

)
sin

(
1 +

√
2

)
θ cos(±θ + ci)

]
+ sin 2θ +Ki, i = 1, 2,

y = cos 2θ + a
[
sin

(
1 −

√
2

)
θ sin(±θ + ci) +

(
1 −

√
2

)
cos

(
1 +

√
2

)
θ cos(±θ + ci)

]
. (27)

From relations (27) it follows, that new solution has restricted slide lines, and we can use these
solutions for description of plastic flows between two rugged slabs.

With the increment of parameter a the thickness of layer increases and becomes approximately
equal to 2(h + a), where h is a thickness of the initial layer. The new solution that we named
S-solution, i.e. obtained from the Prandtl’s solution by means of symmetry transformations (20),
has the form:

σ = −kx+ a
[
cos

(
1 −

√
2

)
θ sin

σ

2k
− (

1 −
√

2
)
sin

(
1 +

√
2

)
θ cos

σ

2k

]
+ k

(
1 − y2

) 1
2 ,

y = cos 2θ + a
[
sin

(
1 −

√
2

)
θ sin

σ

2k
+

(
1 −

√
2

)
cos

(
1 +

√
2

)
θ cos

σ

2k

]
,

where a is an arbitrary parameter. For large values of parameter a we have S-solution far
different from Prandle’s solution. It can be used for analysis of not thin plastic flows.
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