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We consider a certain quotient of Temperley–Lieb algebra of general Coxeter system. This
algebra arises as a quotient of Hecke algebra by some more relations than a Temperley–Lieb
one. These additional relations correspond to the pairs of commuting generators of Coxeter
system in the same way as Temperley–Lieb relations correspond to noncommuting genera-
tors. We prove that such algebras are usually well behaved. Especially for an irreducible
system whose Coxeter graph does not contain a cycle this quotient is a sum of a matrix
algebra and a field for all except a finite set of values of parameter.

1 Hecke deformation of Coxeter group algebra and its quotients

In this section we associate an algebra to a Coxeter group. This algebra is a certain quotient of
the Temperley–Lieb algebra associated to the same Coxeter group. In further sections we show
that such an algebra usually has simple enough structure.

Let W be a Coxeter group with set S ⊂ W of generating reflections, let l : W −→ N0 be
length correspondent to generators S. Let q ∈ C.

Definition 1. The Hecke algebra Hq = Hq(W ) is an associative C-algebra with 1, spanned by
elements {Tw; w ∈ W} with multiplication

TsTw =
{

Tsw, l(sw) = l(w) + 1;
(q − 1)Tw + qTsw, l(sw) = l(w) − 1,

for s ∈ S and w ∈ W . Here T1 = 1Hq .

Note that Hq is a deformation of Coxeter group algebra H1 = CW , and its dimension
(growth) is not greater then for CW . For the general theory of Hecke algebras arising from
Coxeter systems see [1, 2].

Consider for any pair of different reflections si, sj ∈ S a subgroup Wi,j ⊂ W generated by si

and sj . Wi,j is a dihedral group with 2m elements, where m is an order of element sisj in W .

Definition 2. The complete Temperley–Lieb algebra TLc
q = TLc

q(W ) is a quotient of Hq(W )
by relations∑

w∈Wi,j

Tw = 0 (1)

for each pair of different generators si, sj ∈ S.

Note that quotient of Hq(W ) by relations (1) for each pair of noncommuting generators
si, sj ∈ S is called the Temperley–Lieb algebra TLq = TLq(W ) (see [3] and references there).
So, TLc

q is a quotient of TLq.

Remark 1. There is a way to consider Hecke and Temperley–Lieb algebras where q is indeter-
minate. For example, in [4, 5] this is done for Coxeter groups of type A (symmetric groups).
That is well known that Temperley–Lieb algebra of symmetric group Sn over C(q) is semisimple,
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and its evaluation at q ∈ C\{0} is also semisimple if and only if q + q−1 + 2 �= 4 cos2 π
m for some

2 ≤ m ≤ n (see, for example, [2]). In [3] Hecke and Temperley–Lieb algebras of general Coxeter
groups are considered over the ring of Laurent polynomials A = Z[v, v−1] where q = v2. Then
a set {Tw; w ∈ W} would be an A-basis of Hecke algebra. In [6] A-basis of Temperley–Lieb
algebra TLq is given as a certain subset of {Tw; w ∈ W}.

In this paper all algebras will be algebras with 1 over field C. In the following section we
apply combinatorial argumentation based on Diamond lemma to algebras TLc

q. A restriction to
algebras over a field (not ring) is essential here. For Diamond lemma and Groebner basis see,
for example, [7].

2 Presentation of TLc
q via idempotents. Linear basis

Now (and till the end of the paper) we restrict to the class of Coxeter groups (W, S) where
S = {s1, . . . , sn} is a finite set and for each 1 ≤ i < j ≤ n an element sisj has an order either 2
or 3. Let also q �= −1, 0.

In this section we propose another presentation of an algebra TLc
q(W ), which is useful to find

its linear basis and calculate the dimension (or Gelfand–Kirillov dimension).
Consider pi = Tsi+1

q+1 ∈ Hq, and τ = q
(1+q)2

. Then p2
i = pi. Consider two cases.

If si and sj commute in W , then Tsi and Tsj commute, and pi,pj also commute:

pipj = pjpi. (2)

In TLc
q we have relation 1 + Tsi + Tsj + TsiTsj + TsjTsi = 0, which is equivalent to

pipj = pjpi = 0. (3)

If sisj has order 3 in W , then TsiTsjTsi = TsjTsiTsj in Hq, which is equivalent to

pipjpi − τpi = pjpipj − τpj . (4)

Then in TLq and TLc
q there is a relation 1 + Tsi + Tsj + TsiTsj + TsjTsi + TsiTsjTsi = 0, which

is equivalent to

pipjpi − τpi = pjpipj − τpj = 0. (5)

As it can be seen from the definitions, Hq, TLc
q and TLq can be presented via generators Tsi ,

si ∈ S with relations mentioned above. So, we get the following presentation

Proposition 1. Hq(W ) is generated by idempotents p1, . . . , pn with relations (4) for each pair of
noncommuting generators si, sj ∈ W and (2) for each pair of commuting generators si, sj ∈ W .

TLq(W ) is its quotient by relations (5) for each pair of noncommuting generators si, sj ∈ W .
TLc

q(W ) is a quotient of TLq(W ) by relations (3) for each pair of commuting generators
si, sj ∈ W .

In [8] and [9] they study ∗-representations of algebras, generated by projections, which are
exactly TLc

q of Coxeter groups of type An and Ãn correspondingly.
In work [10] of the author some generalizations of TLc

q are considered, where parameter τ
in (5) may depend on i, j. It is noted that relations in presentation of TLc

q by idempotents from
Proposition 1 form a Groebner basis (where ordering on generators pi can be taken arbitrarily,
and we consider corresponding homogenous lexicographical ordering on their noncommutative
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monomials). In other words, monomials in letters p1, . . . , pn, which does not contain the following
submonomials

pipjpi and pjpipj for each non-commuting si, sj ∈ W,

pipj and pjpi for each commuting si, sj ∈ W

together with 1 form a linear basis of TLc
q. Consider the Coxeter graph Γ of Coxeter group W .

As its vertices correspond to si ∈ S, they also correspond to {pi, 1 ≤ i ≤ n}. So, all elements of
this linear basis but 1 can be identified with paths in Γ with one restriction: we consider only
such paths in which all neighboring edges differ. So, we get the following

Proposition 2. An algebra TLc
q(W ) is finite-dimensional iff Coxeter graph Γ of W does not

contain cycles. The dimension of TLc
q is

dim(TLc
q) = 1 +

∑
Γ′∈π0(Γ)

|Γ′|2,

where π0(Γ) is a set of connected components and |Γ′| is a number of vertices in connected
component Γ′.

If Γ contains not more than one cycle in each connected component, then the growth of an
algebra TLc

q is linear, i.e. its Gelfand–Kirillov dimension equals 1.
If some connected component of Γ contains more than one cycle, an algebra TLc

q contains
a free subalgebra on two generators.

3 The structure of finite-dimensional algebras TLc
q

In this section we are going to prove

Theorem 1. Let Coxeter graph Γ of group W do not contain cycles. Then for almost all q ∈ C

(except a finite set)

TLc
q
∼= M1(C)

⊕
Γ′∈π0(Γ)

M|Γ′|(C).

Remark 2. There are values of q, for which TLc
q is not semisimple. For example, TLs

1+
√−3
2

(S3)

is not semisimple as it coincides with TL 1+
√−3
2

(S3).

Let Γ be a tree with n vertices, and Γ0 be the set of its vertices. One can take any vertex
λ ∈ Γ as a root. Then binary relation of being a child is defined as usually on vertices of a rooted
tree: β ∈ Γ0 is a child of α ∈ Γ0 iff there is an edge between α and β and β is farther from the
root λ then α. Define cλ : Γ0 −→ 2Γ0 so that cλ(α) is a set of children vertices of α.

We call λ ∈ Γ0 a matching vertex if there exists a function a : Γ0 −→ C\{0} such that

a(α) + τ
∑

β∈cλ(α)

1
a(β)

= 1 for each α ∈ Γ0, (6)

where τ = q
(q+1)2

.

Lemma 1. If there is a matching vertex in graph Γ, then there is an irreducible representation
of TLc

q in dimension n = |Γ|, in which all generating idempotents are nonzero.
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Proof. We give an explicit construction of such a representation. Consider a vector space V
with basis {eβ ; β ∈ Γ0}. Let λ be a matching vertex. Let aβ =

√
a(β), where a : Γ0 −→ C\{0}

be a function from condition (6) above. Let gβ = aβeβ +
∑

α∈cλ(β)

√
τ

aα
eα. Consider the following

action of generating idempotents:

pβeµ =




aβgβ , µ = β;√
τ

aµ
gβ , µ ∈ cλ(β);

0, otherwise.

It follows from (6) that pβgβ = gβ . If vertices α and β are not connected in Γ, then also
cλ(α) ∩ cλ(β) = ∅, so pβgα = pαgβ = 0. If vertices α and β are connected, then one has
pβgα =

√
τgβ . So, given above is a representation.

To prove it is irreducible we consider matrix units acting on V :

Eα,βeµ =
{

eα, µ = β;
0, otherwise.

If β is a leaf then pβ = Eβ,β. Suppose that for some α matrix units Eβ,β are defined for all
β ∈ cλ(α) via {pµ; µ ∈ Γ0}. Then

Eα,α =
1
a2

α


1 −

∑
β∈cλ(α)

Eβ,β


 pα


1 −

∑
β∈cλ(α)

Eβ,β




also is specified. And for each β ∈ cλ(α)

Eβ,α =
aβ√
τaα

Eβ,βpαEα,α, Eα,β =
aβ√
τaα

Eα,αpαEβ,β .

Thus an image of TLc
q in EndC(V ) contains Eα,α for all α ∈ Γ0 and Eα,β for all pairs of connected

vertices α and β. So representation constructed above is irreducible as graph Γ is connected. �

Note that it is easy to verify if some λ ∈ Γ0 is matching : the values a(α) for α ∈ Γ0 from (6)
are defined uniquely by λ. To find them one should put a(α) = 1 for all leafs α, and then
calculate all other values by recursive formulae (6).

Remark 3. A tree Γ has a matching vertex for almost all q ∈ C. Indeed, when arbitrary
vertex λ is taken to be a root, we can define a(α) from (6) with values in C(q). Then numerators
of irreducible fractions a(α) ∈ C(q) is a set of certain polynomials {P λ

α (q); α ∈ Γ0}, and λ is
a matching vertex iff P λ

α (q) �= 0 for all α ∈ Γ0. An intersection of this finite sets for all λ ∈ Γ0

is exactly the set of such q ∈ C, which we exclude in Theorem 1 in case of connected Γ.

Now we are going to prove Theorem 1.

Proof. Due to Remark 3 for almost all q ∈ C all connected components Γ′ ∈ π0(Γ) have mat-
ching vertices. For such a q we can construct a set of irreducible representations {V Γ′

; Γ′ ∈
π0(Γ)} one for each connected component. Indeed, for each Γ′ we can take a representation of
corresponding subalgebra from Lemma 1, and induce representation of TLc

q putting all genera-
ting idempotents from other connected components to be zero. Moreover, in this construction
representations corresponding to different connected components are nonisomorfic.
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There is one more 1-dimensional representation – the trivial one, in which all generating
idempotents are zero. It is nonisomorfic to any one from a list

{
V Γ′

; Γ′ ∈ π0(Γ)
}
. So, we have

a list of pairwise nonisomorfic irreducible representations, and due to Proposition 2

dim(TLc
q) = dim(C)2 +

∑
Γ′∈π0(Γ)

dim
(
V Γ′)2

.

This implies

TLc
q
∼= M1(C)

⊕
Γ′∈π0(Γ)

M|Γ′|(C)

by Jacobson’s density theorem. �
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