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We consider a certain quotient of Temperley—Lieb algebra of general Coxeter system. This
algebra arises as a quotient of Hecke algebra by some more relations than a Temperley—Lieb
one. These additional relations correspond to the pairs of commuting generators of Coxeter
system in the same way as Temperley—Lieb relations correspond to noncommuting genera-
tors. We prove that such algebras are usually well behaved. Especially for an irreducible
system whose Coxeter graph does not contain a cycle this quotient is a sum of a matrix
algebra and a field for all except a finite set of values of parameter.

1 Hecke deformation of Coxeter group algebra and its quotients

In this section we associate an algebra to a Coxeter group. This algebra is a certain quotient of
the Temperley—Lieb algebra associated to the same Coxeter group. In further sections we show
that such an algebra usually has simple enough structure.

Let W be a Coxeter group with set S C W of generating reflections, let [ : W — Ny be
length correspondent to generators S. Let g € C.

Definition 1. The Hecke algebra H, = H,(W) is an associative C-algebra with 1, spanned by
elements {T,; w € W} with multiplication

Tsw, l(sw) = l(w) + 1;

TsTw = { (@ — DT + qTow, 1(sw) = l(w) — 1,

for s € S and w € W. Here T1 = 1p,,.

Note that H, is a deformation of Coxeter group algebra H; = CW, and its dimension
(growth) is not greater then for CW. For the general theory of Hecke algebras arising from
Coxeter systems see [1,2].

Consider for any pair of different reflections s;,s; € S a subgroup W; ; C W generated by s;
and s;. W; ; is a dihedral group with 2m elements, where m is an order of element s;s; in W.

Definition 2. The complete Temperley-Lieb algebra T'Ly = T Ly (W) is a quotient of Hy(W)
by relations

> Tw=0 (1)

for each pair of different generators s;,s; € S.

Note that quotient of H,(W') by relations (1) for each pair of noncommuting generators
si, 85 € S is called the Temperley-Lieb algebra T'Ly = T'Ly(W) (see [3] and references there).
So, T'Ly is a quotient of T'L,,.

Remark 1. There is a way to consider Hecke and Temperley—Lieb algebras where ¢ is indeter-
minate. For example, in [4, 5] this is done for Coxeter groups of type A (symmetric groups).
That is well known that Temperley—Lieb algebra of symmetric group S,, over C(q) is semisimple,
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and its evaluation at ¢ € C\{0} is also semisimple if and only if ¢ +¢~* +2 # 4 cos® = for some
2 < m < n (see, for example, [2]). In [3] Hecke and Temperley—Lieb algebras of general Coxeter
groups are considered over the ring of Laurent polynomials A = Z[v,v~!] where ¢ = v2. Then
a set {Ty;w € W} would be an A-basis of Hecke algebra. In [6] A-basis of Temperley—Lieb
algebra T'L, is given as a certain subset of {T,;w € W}.

In this paper all algebras will be algebras with 1 over field C. In the following section we
apply combinatorial argumentation based on Diamond lemma to algebras T'Lg. A restriction to
algebras over a field (not ring) is essential here. For Diamond lemma and Groebner basis see,
for example, [7].

2 Presentation of TL; via idempotents. Linear basis

Now (and till the end of the paper) we restrict to the class of Coxeter groups (W,S) where
S ={s1,...,sp} is a finite set and for each 1 <i < j < n an element s;s; has an order either 2
or 3. Let also ¢ # —1,0.

In this section we propose another presentation of an algebra TL;(W), which is useful to find
its linear basis and calculate the dimension (or Gelfand-Kirillov dimension).

Ty +1 .
q:L—J; € Hy,and 7 = ﬁ. Then p? = p;. Consider two cases.

If s; and s; commute in W, then T, and T s; commute, and p;,p; also commute:

Consider p; =

DiPj = PjPi- (2)

In TLZ we have relation 1 + T, + 7. s; + 15,15, + 15,15, =0, which is equivalent to

pip; = pjpi = 0. (3)

If s;s; has order 3 in W, then T},T. s; 1s; = Ts;Ts,Ts; in Hy, which is equivalent to

PiPjDi — TDi = DjDiPj — TDj- (4)

Then in T'L, and TLZ there is a relation 1 + T, + Ts, +Ts,T5; + 15, Ts, + 15,15, Ts, = 0, which
is equivalent to

PipjPi — TD; = pjpipj — TP; = 0. (5)

As it can be seen from the definitions, Hy, T'Lg and T'L, can be presented via generators T,
s; € S with relations mentioned above. So, we get the following presentation

Proposition 1. H, (W) is generated by idempotents p1, ..., p, with relations (4) for each pair of
noncommauting generators s;,s; € W and (2) for each pair of commuting generators s;,s; € W.
TLqe(W) is its quotient by relations (5) for each pair of noncommuting generators s;,s; € W.
TLy(W) is a quotient of TLy(W) by relations (3) for each pair of commuting generators
si,s, € W.

In [8] and [9] they study =-representations of algebras, generated by projections, which are
exactly T'Lg of Coxeter groups of type A, and ;l\; correspondingly.

In work [10] of the author some generalizations of T'L{ are considered, where parameter 7
in (5) may depend on 4, j. It is noted that relations in presentation of T'Ly by idempotents from
Proposition 1 form a Groebner basis (where ordering on generators p; can be taken arbitrarily,
and we consider corresponding homogenous lexicographical ordering on their noncommutative
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monomials). In other words, monomials in letters py, . .., pn, which does not contain the following
submonomials

pip;jp; and p;p;p; for each non-commuting s;,s; € W,

pip; and p;p; for each commuting s;,s; € W

together with 1 form a linear basis of T'Lg. Consider the Coxeter graph I' of Coxeter group W.
As its vertices correspond to s; € S, they also correspond to {p;,1 <i < n}. So, all elements of
this linear basis but 1 can be identified with paths in I" with one restriction: we consider only
such paths in which all neighboring edges differ. So, we get the following

Proposition 2. An algebra TL;(W) is finite-dimensional iff Cozxeter graph I' of W does not
contain cycles. The dimension of T'Lg is

dim(TLY) =1+ Y [P,
IV emo(T)

where mo(T) is a set of connected components and |I| is a number of vertices in connected
component T".

If ' contains not more than one cycle in each connected component, then the growth of an
algebra T'Ly, is linear, i.e. its Gelfand-Kirillov dimension equals 1.

If some connected component of I' contains more than one cycle, an algebra TLy contains
a free subalgebra on two generators.

3 The structure of finite-dimensional algebras TLZ

In this section we are going to prove

Theorem 1. Let Cozeter graph I' of group W do not contain cycles. Then for almost all ¢ € C
(except a finite set)

I emo(T)

Remark 2. There are values of ¢, for which T'Lg is not semisimple. For example, T'L7 V= (Ss)

is not semisimple as it coincides with T'L . ,—3(S3).
2

Let " be a tree with n vertices, and I'g be the set of its vertices. One can take any vertex
A € I' as aroot. Then binary relation of being a child is defined as usually on vertices of a rooted
tree: B € I'g is a child of « € T’y iff there is an edge between o and  and (3 is farther from the
root A then a. Define ¢y : I'g — 250 so that cx(a) is a set of children vertices of a.

We call A € I’y a matching vertex if there exists a function a : I'g — C\{0} such that

1
ala) + 7 —— =1 for each o € Iy, 6
(a) gg;(a)“(ﬁ) 0 (6)

q
(¢+1)2"

where 7 =

Lemma 1. If there is a matching vertex in graph ', then there is an irreducible representation
of TLg in dimension n = IT'|, in which all generating idempotents are nonzero.
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Proof. We give an explicit construction of such a representation. Consider a vector space V
with basis {eg; 3 € I'g}. Let A be a matching vertex. Let ag = y/a(3), where a : 'y — C\{0}

be a function from condition (6) above. Let gg = ageg + > ;/—zea. Consider the following

acex(B)
action of generating idempotents:
aggs,  p =0
VT
pgen =19 ——98 K Ecx(B);
Ap
0, otherwise.

It follows from (6) that pggs = gg. If vertices o and [ are not connected in I', then also
ex(a) Nex(B) = @, s0 pgga = pPags = 0. If vertices a and § are connected, then one has
PBYa = \/Tgg. So, given above is a representation.

To prove it is irreducible we consider matrix units acting on V:

. €ay, M= /8;
Eo,pey _{ 0, otherwise.

If 3 is a leaf then pg = Egg. Suppose that for some o matrix units Egg are defined for all
B € ex(a) via {py;p € I'o}. Then

1
Eaa=-z(1= > Esg|pa|l= 3 Eup
« Beea () Beex(a)

also is specified. And for each 8 € ¢y ()

a a
Ega = \/;ia EgppaFaa,  Fap= —ﬁia Ea,apakigp-

Thus an image of T'Lg in Endc (V') contains E, , for all @ € I'g and E, g for all pairs of connected
vertices o and 3. So representation constructed above is irreducible as graph I' is connected. W

Note that it is easy to verify if some A € I'g is matching: the values a(a) for a € 'y from (6)
are defined uniquely by A. To find them one should put a(a) = 1 for all leafs «, and then
calculate all other values by recursive formulae (6).

Remark 3. A tree I' has a matching vertex for almost all ¢ € C. Indeed, when arbitrary
vertex )\ is taken to be a root, we can define a(a) from (6) with values in C(¢). Then numerators
of irreducible fractions a(a) € C(q) is a set of certain polynomials {P(q); € T'g}, and A is
a matching vertex iff P)(q) # 0 for all a € T'y. An intersection of this finite sets for all A € I'g
is exactly the set of such ¢ € C, which we exclude in Theorem 1 in case of connected I'.

Now we are going to prove Theorem 1.

Proof. Due to Remark 3 for almost all ¢ € C all connected components I € mo(I") have mat-
ching vertices. For such a ¢ we can construct a set of irreducible representations {VF/;I" €
mo(I")} one for each connected component. Indeed, for each IV we can take a representation of
corresponding subalgebra from Lemma 1, and induce representation of T'Lg putting all genera-
ting idempotents from other connected components to be zero. Moreover, in this construction
representations corresponding to different connected components are nonisomorfic.
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There is one more 1-dimensional representation — the trivial one, in which all generating
idempotents are zero. It is nonisomorfic to any one from a list {VF/; I" € m (F)} So, we have
a list of pairwise nonisomorfic irreducible representations, and due to Proposition 2

dim(TLE) = dim(C)? + > dim (V)%
IVemo(I)

This implies

I eo(T)

by Jacobson’s density theorem. |
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