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This is a summary of our recent results to appear in [5]. In the framework of jet superspace
geometry, we introduce variational multivectors and the variational Poisson and Schouten
brackets, which are dual to the variational complex. Their relations with the antibracket
in field theory and applications to finding of Hamiltonian structures for evolution equations
are outlined. We show also that local variational differential operators of B.L. Voronov,
I.V. Tyutin, and Sh.S. Shakhverdiev are determined by variational multivectors and are
well-defined on the algebra of multilocal functionals. To achieve the latter result, we show
that locally a finite number of smooth action functionals are either linearly dependent or
‘almost’ functionally independent in a certain sense.

Introduction

In the geometric theory of jet spaces the so-called variational complex [12, 13] is of central
importance (see, for example, [2, 7] for an introductory treatment). The variational complex is
obtained from the de Rham sequence on jet manifolds by a quotient with respect to ‘variationally
trivial’ forms. This complex contains the Euler operator as one of its differentials.

By analogy with ordinary manifolds, where symmetric and skew-symmetric products of vector
fields and their Poisson and Schouten brackets are introduced as dual counterparts of forms and
the de Rham differential, it is interesting to consider a dual theory to the variational complex
and its differential: variational multivectors and their brackets, the variational Poisson and
Schouten brackets.

In this note, we summarize our recent results on this topic; full details can be found in [5].
In Section 1, we set up notation and terminology related to graded vector spaces, graded

algebras, and differential operators over such algebras.
Then, we introduce a graded Lie algebra structure on a space of multilinear maps on a vector

space. This structure generalizes the Nijenhuis–Richardson and Schouten brackets. By interpre-
ting multilinear maps as differential operators on polynomial functions, we provide an algebraic
counterpart for a class of operators recently introduced in [14], namely the local variational
differential operators.

In Section 2, we specialize our algebraic setting to a geometric situation. Namely, we consider
differential operators on local functionals (or actions). Local functionals are elements of a co-
homology group of the horizontal de Rham complex. This complex consists of differential forms
on the base manifold with coefficients in functions of dependent variables (fields) and a finite
number of their derivatives. In other words, local functionals are Lagrangian densities modulo
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total divergences. The distinguished expressions of variational multivectors and their bracket
are given in Theorems 2, 3.

In Section 3, we consider the above general formalism in different contexts.
First, we observe that the variational Poisson bracket coincides with the Poisson brackets

constructed by Kupershmidt [8] on the so-called ‘cotangent bundle to a bundle’ when restricted
to the subspace of polynomial functions.

Second, we consider the skew-symmetric variational multivectors and the variational Schouten
bracket. The coordinate version of this bracket is well-known under the name antibracket (see,
e.g., [4] and references therein), so that we obtain here a geometric setting for the antibracket
formalism.

This bracket is also of great importance in the Hamiltonian theory of integrable evolution
equations, since skew-symmetric variational bivectors whose variational Schouten bracket with
itself vanishes are just Hamiltonian operators (see, e.g., [3] and references therein).

As an application of our approach to variational multivectors we discuss the calculus of local
variational differential operators by B.L. Voronov, I.V. Tyutin, and Sh.S. Shakhverdiev [14]. In
the study of the so-called δ(0)-problem in field theory, the authors discovered fundamentally
new operators that act on smooth functions F (S1, . . . , SN ) of local functionals Si (multilocal
functionals). We prove that these operators are well-defined, i.e., if F (S1, . . . , SN ) is an identi-
cally zero functional then ∇(F (S1, . . . , SN )) is also zero. The crucial part of the proof is to show
that all relations in the algebra of multilocal functionals are linear, roughly speaking. This fact
looks interesting by itself.

1 The Lie algebra of multilinear mappings: an algebraic model

Graded spaces and graded algebras. Let G be an Abelian group. A vector space V is called
G-graded if V =

⊕
g∈G Vg for some vector spaces Vg. Superspaces are Z2-graded vector spaces.

The notion of graded space can be carried out in a natural way to subspaces, tensor products,
etc. of graded spaces.

A k-algebra A is called G-graded if A is a G-graded vector space and Ag1Ag2 ⊂ Ag1+g2 , for
all g1, g2 ∈ G.

A commutation factor is a pairing G×G→ k \ {0}, (g1, g2) �→ {g1, g2}, such that

{g1, g2}−1 = {g2, g1}, {g1 + g2, g3} = {g1, g3}{g2, g3}.

When G = Z or Z2, there is only one nontrivial commutation factor, namely, the super-
commutation factor {g1, g2} = (−1)g1g2 . In formulas commutation factors are used according
to the following ‘generalized rule of signs’: whenever an object (i.e., an element of a G-graded
vector space) of degree g1 is interchanged with an object of degree g2, the multiplier {g1, g2} is
introduced.

For a fixed element g = (g1, . . . , gn) ∈ Gn = G⊕ · · · ⊕G there is a unique function εg : Sn →
k \ {0} on the permutation group Sn such that

1. εg(σi) = {gi, gi+1} for a transposition σi = (i, i+ 1);

2. εg(σ′ ◦ σ′′) = εσ′′(g)(σ′)εg(σ′′), where σ(g) = (gσ(1), . . . , gσ(n)).

For the super-commutation factor the function ε(1,...,1) coincides with the standard sign of per-
mutations. We shall denote it by ε.

For our convenience, if v ∈ Vg1 and w ∈Wg2 are two homogeneous elements of two G-graded
vector spaces V and W , then we write {v, w} rather than {g1, g2}.

A G-graded algebra A is called commutative if for all a, b ∈ A we have ab = {a, b}ba.
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A left module M over a G-graded commutative algebra A is called G-graded ifM =
⊕

g∈GMg

and Ag1Mg2 ⊂Mg1+g2 .
A G-graded Lie algebra is a G-graded algebra A such that the multiplication in A, denoted

by [· , ·] : A⊗k A→ A, satisfies the properties:

[a, b] = −{a, b}[b, a], [[a, b], c] = [a, [b, c]] + {b, c}[[a, c], b],
for all a, b, c ∈ A. For example, if V is a G-graded vector space, then Homk(V, V ), equipped
with the commutator, is a G-graded Lie algebra.

A Lie superalgebra is Z2-graded Lie algebra with respect to the super-commutation factor.
Let A be an associative commutative G-graded algebra with unity. A k-homomorphism ∆ ∈

Homk(A,A) is called a scalar G-graded differential operator of order k, if for all a0, . . . , ak ∈ A
we have

[a0, [a1, . . . , [ak,∆] . . . ]] = 0.

In this equality ai are the operators of left multiplication. Denote by Diffk(A) the set of all
scalar differential operators of order k. It is clear that Diff0(A) = A and Diffk(A) ⊂ Diff l(A)
for k ≤ l. If ∆1 ∈ Diffk(A) and ∆2 ∈ Diff l(A), then it is easily seen that ∆1 ◦ ∆2 ∈ Diffk+l(A)
and [∆1,∆2] ∈ Diffk+l−1(A).

The Lie algebra of multilinear mappings. Let V be a G-graded vector space. Let
{Mk(V )}k∈N be a family of graded subspaces of the space of k-linear maps of V with values
in V with the following properties:

1. M0(V ) = V ;

2. for all f ∈ Mk(V ), g ∈ Ml(V ), and 1 ≤ i ≤ k the (k + l − 1)-linear map h defined by

h(v1, . . . , vk+l−1) = f(v1, . . . , vi−1, g(vi, . . . , vi+l−1), vi+l, . . . , vk+l−1)

belongs to Mk+l−1(V ).

The space M1(V ) is a graded Lie algebra with respect to the commutator. Let g be a graded
Lie subalgebra of M1(V ). For each k ≥ 1 define G-graded vector space g(k) to be the graded
subspace of Mk(V ) such that f ∈ g(k) if

1. f is (graded) symmetric, i.e., f(v1, . . . , vk) = εv(σ)f(vσ(1), . . . , vσ(k)) for all σ ∈ Sk;

2. for all v1, . . . , vk−1 the maps v �→ f(v1, . . . , vi−1, v, vi, . . . , vk−1) belong to g.

Obviously, g(1) = g. By definition, we put g(0) = V and g(k) = 0 for k < 0.
Let us introduce the following notation: if f is a k-linear map as above and vi ∈ V , then

f(v1, . . . , vl) for l ≤ k will stand for the (k − l)-linear map obtained by contracting the first l
arguments of f with vi. Then, we can prove the following theorem [5].

Theorem 1. On the space g(∗) =
⊕

k g(k) there exists a unique G-graded Lie algebra structure
[[· , ·]] such that

1. [[g(k), g(l)]] ⊂ g(k+l−1);

2. [[f, v]] = f(v) for v ∈ g(0) = V , f ∈ g(k).

Using the induction, we get the following explicit formula for this bracket:

[[f1, f2]](v1, . . . , vk+l−1) =
∑

σ∈Sl
k+l−1

εv(σ)f1(f2(vσ(1), . . . , vσ(l)), vσ(l+1), . . . , vσ(k+l−1))

− {f1, f2}
∑

σ∈Sk
k+l−1

εv(σ)f2(f1(vσ(1), . . . , vσ(k)), vσ(k+1), . . . , vσ(k+l−1)),
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where Sin ⊂ Sn is the set of all (i, n− i)-unshuffles1, that is, all permutations σ ∈ Sn such that
σ(1) < σ(2) < · · · < σ(i) and σ(i+ 1) < σ(i+ 2) < · · · < σ(n).

It can be recognized that, by choosing suitable graded vector spaces and algebras, one re-
covers the Nijenhuis–Richardson bracket, the Schouten bracket and the symmetric Schouten
concomitant (see [5] for details and references).

Consider the ideal I in the tensor algebra T (V ) generated by (v ⊗ w − {v, w}w ⊗ v) ∈ V ⊗2

for v, w ∈ V . The algebra S(V ) = T (V )/I is a G-graded associative commutative algebra with
unity called the symmetric algebra of V .

Now, to multilinear maps f ∈ g(k) we assign differential operators on the algebra S(V ).
Namely, for k = 0 we define ∇f to be the multiplication by f ∈ V . For k > 0 it can be proved [5]
that there exists a unique differential operator ∇f ∈ Diffk(S(V )) such that ∇f |Sl(V ) = 0,
for 0 ≤ l < k, and ∇f (v1 · · · vk) = f(v1, . . . , vk). The operator ∇f fulfills the expression
∇f (v1 · · · vn) =

∑
σ∈Sk

n
εv(σ)f(vσ(1) · · · vσ(k))vσ(k+1) · · · vσ(n) for n > k. As one can expect, we

have [∇f1 ,∇f2 ] = ∇[[f1,f2]] for f1 ∈ g(k) and f2 ∈ g(l).
Now we extend the operators ∇f to a bigger algebra. For this purpose, let us represent

the graded space V in the form V = V0 ⊕ V+, where V+ =
⊕

g∈G\{0} Vg. We have S(V ) =
S(V0)⊗k S(V+). The algebra S(V0) can be identified with an algebra of (polynomial) functions
on the dual space V ∗

0 . Let us extend this algebra to the algebra A0 of functions on V ∗
0 of the

form F (v1, . . . , vN ), where F ∈ C∞(RN ) is a smooth function in many arguments and vi ∈ V0.
Assign to all elements of A0 the degree 0. Denote by A(V ) the graded algebra A0 ⊗k S(V+).
Then, it is not difficult to prove that, for each f ∈ g(k), the operator ∇f has the unique extension

∇f (F (v1, . . . , vN ) ⊗ v+) =
∑

0≤l≤k
σ∈Sl

N

∂lF

∂tσ(1) · · · ∂tσ(l)
(v1, . . . , vN ) ⊗∇f(vσ(1),...,vσ(l))(v+),

to the algebra A(V ).

2 Variational Poisson bracket

The jet bundle setting: preliminaries. In this paper we deal with the infinite jet bundles of
vector superbundles. Jets of purely even bundles have been detailed extensively in the literature
(see, e.g., [2,7]), so we will shortly describe the graded setting here. We assume that all manifolds
and maps are C∞.

We say that a vector bundle π : E → M is a superbundle if it is the direct sum π = π0 ⊕ π1

of two vector bundles π0 : E0 →M and π1 : E1 →M .
Recall that each vector bundle α over M determines a supermanifold as follows [1,10,11]. The

underlying even manifold is M , and the structure sheaf is the sheaf of sections of the exterior
algebra of α∗.

Denote by αk,l : Jk(α) → J l(α) and αk : Jk(α) →M the ordinary projections of jet spaces.
Consider the pullback (π0

k)
∗(π1

k) : Jk(π0)×M Jk(π1) → Jk(π0) of the bundle π1
k : Jk(π1) →M

along the projection π0
k : Jk(π0) → M . We define the k-jet space of π to be the supermanifold

that corresponds to the bundle (π0
k)

∗(π1
k). It will be denoted by Jk(π). In particular, the

underlying even manifold of Jk(π) is Jk(π0). The natural projections πk : Jk(π) → M and
πk,l : Jk(π) → J l(π) for k > l yield a chain whose inverse limit is said to be the infinite jet space
and is denoted by J∞(π).

1The term unshuffle is borrowed from [9] and means separating an ordered set into two subsets, the order
within each subset being as in the original set.
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Let x1, . . . , xn be local coordinates in M , u1, . . . , um0 and um0+1, . . . , um be local fiber co-
ordinates in E0 and E1 respectively. Then ujσ are local derivative coordinates on Jk(π). The
coordinates xi and ujσ for j ≤ m0 are even, while ujσ for j > m0 are odd.

The superalgebra F(π) of smooth functions on J∞(π) is defined as the direct limit of the
chain of injections π∗k,k−1. The F(π)-module Λ∗(π) of differential forms on J∞(π) is defined
in the similar way. Below we omit the letter π and write simply F , Λk, and so on, when no
confusion can arise.

A horizontal module is the F-module of sections of π∗∞(α), where α is a superbundle over M .
Denote by κ the horizontal module corresponding to the bundle π itself.

Let P1 and P2 be horizontal modules of even vector bundles. A linear differential operator
∆: P1 → P2 is called C-differential if it can be restricted to the graphs of all infinitely prolonged
sections of the bundle. The set of all C-differential operators from P1 to P2 is denoted by
CDiff(P1, P2). This definition can be generalized to the case of superbundles [5]. In coordinates,
C-differential operators have the form of a matrix (aσijDσ), where aσij ∈ F , Dσ = Di1 ◦ · · · ◦Dir

for σ = i1 . . . ir and Di is the total derivative operator with respect to xi.
A π∞-vertical vector field on J∞(π) is called an evolutionary field if it commutes with all Di

(this property does not depend on the choice of coordinates). In coordinates, each evolutionary
field is of the form Eϕ =

∑
j,σDσ(ϕj)∂/∂u

j
σ, where ϕj ∈ F .

Let P be a horizontal module. For each element p ∈ P there is a C-differential operator
�p : κ → P called the universal linearization of p and defined by �p(ϕ) = (−1)pϕEϕ(p), with ϕ ∈
κ. Here and subsequently, symbols used as the exponents of (−1) stand for the corresponding
parities.

A differential form ω ∈ Λk on J∞(π) is called a Cartan form if its pull-back through any
prolonged section vanishes. In coordinates, Cartan forms contain factors of the type ωjσ =
dujσ − ∑

i u
j
σi dx

i. Denote the module of all Cartan q-forms by CΛq. Then d(CΛq) ⊂ CΛq+1.
Therefore the quotient d̄ of d, acting on Λ̄∗ = Λ∗/CΛ∗, is well defined. Elements of Λ̄q are
called horizontal forms. In coordinates, Λ̄q is generated by f dxi1 ∧ · · · ∧ dxiq , where f ∈ F , and

d̄(f dxi1 ∧ · · · ∧ dxiq) =
n∑
i=1

Di(f) dxi ∧ dxi1 ∧ · · · ∧ dxiq . The cohomology H̄ i(π) of the complex

(Λ̄∗, d̄) coincides with the de Rham cohomology of M for all degrees i up to n− 1 [12,13].
If P is an F-module, we write P̂ = HomF (P, Λ̄n) and consider the natural pairing 〈· , ·〉 : P̂ ×

P → Λ̄n. We recall that for each operator ∆ ∈ CDiff(P,Q) there exists a unique operator
∆∗ ∈ CDiff(Q̂, P̂ ) such that

[〈q̂,∆(p)〉] = (−1)∆q̂[〈∆∗(q̂), p〉], q̂ ∈ Q̂, p ∈ P,

where [ω] denotes the horizontal cohomology class of ω ∈ Λ̄n. The operator ∆∗ is called adjoint
to ∆. In coordinates, (

∑
σ a

σ
ijDσ)∗ = (

∑
σ(−1)|σ|Dσ ◦ aσij)st, where aσij ∈ F and the symbol ‘st’

denotes the supertransposition.
Since evolutionary fields commute with d̄, the cohomology class [Eϕ(ω)] for ω ∈ Λ̄n is well de-

fined; denote it by Eϕ([ω]). We have Eϕ([ω]) = [〈ϕ,E(ω)〉], where E(ω) = �∗ω(1) is the Euler ope-
rator. In coordinates, E(Ldx1∧· · ·∧dxn) = (δL/δuj), where δL/δuj =

∑
σ(−1)|σ|Dσ(∂L/∂u

j
σ).

Variational Poisson bracket. In this section we use the general construction of Section 1 to
introduce a (super)symmetric bracket on multilinear maps of the form H̄n × · · · × H̄n → H̄n.
Then, we provide a description of maps and the bracket in terms of selfadjoint operators. To this
aim, we take G = Z2 and V = H̄n. The space Mk(H̄n) is defined to be the set of multilinear
maps f of the form

f([ω1], . . . , [ωk]) = [f̃(ω1, . . . , ωk)],

where f̃ : Λ̄n × · · · × Λ̄n → Λ̄n is a multilinear differential operator. It is easily shown that we
can take κ for the algebra g. The spaces g(k), thus constructed, are denoted by κ

(k). Elements
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of κ
(k) will be referred to as variational (super)symmetric multivectors. The bracket [[· , ·]] on κ

(k)

defined in Section 1 is called the variational Poisson bracket.
Let us denote by CDiff self

(k) (P, P̂ ) the module of k-linear C-differential operators ∆: P × · · · ×
P → P̂ which are (graded) symmetric and self-adjoint in each argument.

Theorem 2 ([5]). For each f ∈ κ
(k) there exists a unique C-differential operator ∆f ∈

CDiff self
(k−1)(κ̂,κ) such that

f(ω1, . . . , ωk) = [〈∆f (E(ω1), . . . ,E(ωk−1)),E(ωk)〉].
From now on, we identify variational multivectors with the corresponding C-differential ope-

rators.

Theorem 3 ([5]). If ∆1 ∈ κ
(k) and ∆2 ∈ κ

(l) then for all ψ1, . . . , ψk+l−2 ∈ κ̂ we have

[[∆1,∆2]](ψ1, . . . , ψk+l−2)

= (−1)∆1∆2

( ∑
σ∈Sl−1

k+l−2

εψ(σ)(−1)∆1ψσ(1,l−1)�∆2,ψσ(1,l−1)
(∆1(ψσ(l,k+l−2)))

−
∑

σ∈Sk
k+l−2

εψ(σ)∆2(�∗∆1,ψσ(1,k−1)
(ψσ(k)), ψσ(k+1,k+l−2))

)

−
∑

σ∈Sk−1
k+l−2

εψ(σ)(−1)∆2ψσ(1,k−1)�∆1,ψσ(1,k−1)
(∆2(ψσ(k,k+l−2)))

+
∑

σ∈Sl
k+l−2

εψ(σ)∆1(�∗∆2,ψσ(1,l−1)
(ψσ(l)), ψσ(l+1,k+l−2)), (1)

where �∆,ψ1,...,ψs(ϕ) = (−1)(ψ1+···+ψs)ϕ�∆(ϕ)(ψ1, . . . , ψs), for ϕ ∈ κ, and ψσ(k1,k2) is the notation
for the vector ψσ(k1), . . . , ψσ(k2). When ψσ(k1,k2) is used as the exponent of (−1) it means the
sum of degrees of ψσ(k1), . . . , ψσ(k2).

3 Examples and applications

Cotangent bundle to a bundle and the variational Poisson bracket. Here we compare
our variational Poisson brackets with the Poisson brackets constructed by Kupershmidt [8].
Let us consider the bundles π̂ : Ê = E∗ ⊗M

∧n(T ∗M) → M and Π = π ⊕ π̂. Following
Kupershmidt [8] we call the bundle Π∞ : J∞(Π) →M the cotangent bundle to the bundle π.

Let us denote by pj , j = 1, . . . ,m, the fiber coordinates in Ê dual to uj with respect to
a volume form on M . Then coordinates in J∞(Π) are xi, ujσ, p

j
σ.

We see that κ(Π) = κΠ ⊕ κ̂Π, where κΠ = Γ(Π∗(π)). On the space H̄n(Π) there exists
a natural Poisson bracket [8] [[F,H]] = [〈E(F ), A(E(H))〉], for F , H ∈ H̄n(Π), where A : κ̂(Π) →
κ(Π), A(ψ,ϕ) = (−ϕ,ψ) for ϕ ∈ κΠ and ψ ∈ κ̂Π. In coordinates we have

[[F,H]] =
∑
j

(
(−1)p

j(F+1) δF

δpj
δH

δuj
− (−1)u

jF δF

δuj
δH

δpj

)
.

Now, since by definition elements of F(π̂) are identified with differential operators from
Γ(π̂) to C∞(M), we have the natural inclusion CDiff(κ̂,F) → F(Π), which uniquely pro-
longs to the inclusion of algebras CDiff sym

(∗) (κ̂,F) → F(Π). This leads to the further inclusions

CDiff sym
(∗) (κ̂, Λ̄n) → Λ̄n(Π) and κ

(∗) → H̄n(Π), and to the following theorem (see [5] for details
and proofs).
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Theorem 4 ([5]). The above Poisson bracket extends the variational Poisson bracket to H̄n(Π).

Variational Schouten bracket (antibracket) and Hamiltonian formalism. Using an
appropriate commutation factor, one easily obtains odd counterparts of the constructions from
the previous subsection: super skew-symmetric multivectors and the variational Schouten brac-
ket. This bracket in coordinates coincides with the antibracket [4], thus, our results provide
a geometrical description of the antibracket.

Let us denote by CDiff skew
(k) (κ, κ̂) the module of k-linear C-differential operators ∆: κ ×

· · · × κ → κ̂ which are skew-symmetric and skew-adjoint in each argument. By analogy with
Theorem 2 it can be proved that each super skew-symmetric multivector can be represented
through a unique C-differential operator ∆ ∈ CDiff skew

(k−1)(κ̂,κ). Of course, formula (1) holds for
the variational Schouten bracket too, mutatis mutandis.

The variational Schouten bracket is useful in the Hamiltonian theory of evolution equations.
Let us consider a purely even bundle π for the moment. An operator A ∈ CDiff skew

(1) (κ̂,κ)
(variational bivector) is called Hamiltonian if [[A,A]] = 0. A Hamiltonian operator defines a Lie
algebra structure on H̄n(π). An evolution equation ut = f , f ∈ κ is said to be Hamiltonian
with respect to A if At − [[A, f ]] = 0.

It can be shown that an evolution equation is Hamiltonian if and only if � ◦ A+ A ◦ �∗ = 0,
where � is the linearization of the equation at hand. Combining this with other geometric consi-
derations, one obtains an efficient method to find Hamiltonian structures for a given equation [6].

Local variational differential operators. We want to identify the space H̄n with a subspace
of functionals on Γ(π). Consider first the case of a purely even vector bundle π : E →M .

A domain is an oriented open subset U of M with compact closure Ū and smooth boun-
dary ∂U . Let U1, U2 ⊂ M be two domains such that B = ∂U1 = ∂U2 and the orientations
of U1, U2 induce opposite orientations on B. Let si ∈ Γ(π, Ūi), i = 1, 2, [s1]∞x = [s2]∞x for
all x ∈ B. Here and below [si]∞x is the infinite jet of si at x. A horizontal cohomology class
[ω] ∈ H̄n gives a well-defined functional on such 4-tuples (U1, U2, s1, s2) as follows

ω(U1, U2, s1, s2) =
∫
Ū1

j∞(s1)∗(ω) +
∫
Ū2

j∞(s2)∗(ω),

where j∞(si) is the section x �→ [si]∞x of π∞. It is easily seen that each nonzero class determines
a nonzero functional.

Following [14] we call functionals of the form F (ω1, . . . , ωN ), where F is a smooth function
in many arguments, multilocal functionals. Denote by A = A(π) the algebra of multilocal
functionals. A natural question arises: what are the relations in A, i.e., for what nonzero
smooth functions F and horizontal forms ωi the expression F (ω1, . . . , ωN ) induces an identically
zero functional? It turns out that at least locally (in a certain sense) all relations in A are
generated by linear relations in H̄n.

Let U ⊂ M be a domain. For a finite subset V ⊂ U and s0 ∈ Γ(π, Ū) put Γs0,V = {s ∈
Γ(π, Ū) | [s]∞x = [s0]∞x ∀x ∈ V ∪∂U}. Such subsets of Γ(π, Ū) are endowed with the C∞-topology.

Theorem 5 ([5]). Let s0 ∈ Γ(π, Ū), V be a finite subset of U , and ω1, . . . , ωl ∈ Λ̄n. Consider
the linear map Ψ: Γ(π) → R

l, Ψ(s) =
(∫
Ū j∞(s)∗(ω1), . . . ,

∫
Ū j∞(s)∗(ωl)

)
. Suppose that there

exists a neighborhood Γ ⊂ Γs0,V of s0 such that Ψ(Γ) does not contain any open subset of R
l.

Then there is a nontrivial linear combination a1ω1 + · · ·+alωl that induces a constant functional
on a neighborhood Γ′ ⊂ Γs0,V ∪V ′ of s0, where V ′ ⊂ U consists of k < l points.

Return to a 4-tuple T = (U1, U2, s1, s2). For finite subsets Vi ⊂ Ui, i = 1, 2, set Γ(V1, V2) =
{(U1, U2, s

′
1, s

′
2) | s′i ∈ Γsi,Vi , i = 1, 2}. Below a weak neighborhood of T is a C∞-topological

neighborhood of T in the set Γ(V1, V2) for some V1, V2.
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A smooth function F : R
N → R is said to be almost identically zero around x ∈ R

N if for any
neighborhood U of x there is a nonempty open subset U ′ ⊂ U such that F |U ′ = 0. In particular,
in this case all partial derivatives of F vanish at x.

Theorem 6 ([5]). Suppose that a multilocal functional F (ω1, . . . , ωN ) is zero on some weak
neighborhood of T and the function F is not almost identically zero around

(
ω1(T ), . . . , ωN (T )

)∈
R
N . Then there is a nontrivial linear combination a1ω1 + · · · + aNωN that induces a constant

functional on a weak neighborhood of T .

Corollary 1 ([5]). For any variational multivector f ∈ κ
(k) the formula

∇f (F (ω1, . . . , ωN )) =
∑

1≤i1,...,ik≤N

∂kF

∂ti1 . . . ∂tik
(ω1, . . . , ωN ) · f([ωi1 ], . . . , [ωik ]). (2)

determines a well-defined differential operator ∇f : A → A of order k.

Following [14], we call (2) local variational differential operators.
If π is a vector superbundle then the horizontal cohomology space is Z-graded H̄n = ⊕i≥0H

n
i ,

the space Hn
0 being isomorphic to the n-th horizontal cohomology space of the even compo-

nent π0. In this case we define A(π) = A(π0) ⊗R S(⊕i≥1H
n
i ). Applying Corollary 1 to π0, one

can show that local variational differential operators are well-defined on A(π).
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