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The modulational instability (MI) of some discrete nonlinear evolution equations, repre-
senting approximations of Davydov’s model of α-helix in protein, is studied. In a multiple
scales analysis the dominant amplitude usually satisfies the nonlinear Schrödinger equation
(NLS), or the Zakharov–Benney equations (ZB), if a long wave-short wave resonance takes
place. The MI is studied from a statistical point of view, where a new phenomenon, similar
with the Landau damping in plasma physics, can appear for a Lorentzian distribution of the
unperturbed Fourier transform of the two-point correlation function.

1 Introduction

Many quasi-one-dimensional molecular systems, especially those of biological interest, are very
complicated structures, built from complexes of atoms connected by hydrogen bonds. A typical
example is the complex structure of α-helix in protein. It consists of three coupled chains, he-
lically distorted, with hydrogen bonds between the groups of atoms along the chain. It is hard
to imagine that a model can be elaborated which could take into account all this complexity.
A very simple, but still useful approximation consists in replacing of the three coupled chains by
a single straight one. Further from the multitude of the inter- and intra-molecular excitations,
only one, corresponding to the amide I oscillations, is taken into account. This is considered to
be the “basket” where the energy released in the adenosine triphosphate hydrolysis is stored.
The existing dipole-dipole interactions between them provides the mechanism for the transport
of these excitonic excitations along the chain. Such an exciton generates a local distortion and
a nonlinear coupling between excitons and the acoustic phonon field (describing the harmonic
oscillations of the molecules along the chain) appears. The consequence of this nonlinear in-
teraction is generation of robust self-trapped excitations that can transport the energy along
the chain. Such a model for storage and transport of energy along the α-helix structure was
proposed thirty years ago by Davydov [1–7].

2 Davydov’s model

In its simplest form, Davydov’s model considers a linear chain of aminoacids – named afterward
“molecules” – connected between by hydrogen bonds. If B+

n (Bn) is the creation (annihilation)
operator of the intra-molecular excitation in the n-th cell, the excitonic Hamiltonian can be
described by an excitonic Hamiltonian of the form

Hex = E0

∑
B+

n Bn − 1
2

∑
mn

JmnB+
n Bm,

where E0 is the vibration energy of the C = O group, and Jmn the dipole-dipole interaction
between two such excitations in the n- and m-th cells. Usually only nearest neighbour interaction
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is taken into account (m = n ± 1), but also a long range interaction like Kac–Baker model can
be considered.

Jmn = J
1 − r

2r
e−γ|m−n|, r = e−γ .

The acoustic mode of vibration of the molecules along the chain are described by harmonic
Hamiltonian

Hph =
1
2

∑
n

(
1
M

p̂2
n + w(ûn+1 − ûn)2

)
.

M being the mass of the molecule, and w the elastic spring between two neighbouring molecules.
The nonlinearity enters in the interaction Hamiltonian

Hint = χ
∑

n

(ûn+1 − ûn)B+
n Bn

with χ being the phonon-exciton coupling constant. The total Hamiltonian is

H = Hex + Hph + Hint.

A coherent state approximation is suitable for describing extended localized states in such sys-
tems. For the state vector we shall consider (Davydov ansatz)

|Ψ(t)〉 =
∑

n

an(t)B+
n exp

[
−1

�

∑
n′

(βn′(t)p̂n′ − πn′(t)ûn′)

]
|0〉,

where an(t), βn(t), πn(t) are time dependent c-numbers, and |0〉 is the vacuum state both for
excitons and phonons. Using the average value of Ĥ in the classical equations of motion, one
gets

i�ȧn = Ean −
∑

p

J(an+p + an−p) + χ(βn+1 − βn)an,

Mβ̈n − w(βn+1 − 2βn + βn−1) = χ(|an|2 − |an−1|2).
With introduction of the relative displacement ρn by ρn = βn+1 − βn−1, the previous equations
become

i�ȧn = Ean −
∑
p=1

Jp(an+p + an−p) + χρnan,

Mρ̈n − w(ρn+1 − 2ρn + ρn−1) = χ(|an+1|2 − 2|an|2 + |an−1|2).

3 Multiple scales method

The multiple scales method is an adequate mathematical method to study long-time evolution
of this nonlinear system of coupled equations [8,9]. The classical excitonic variable is written as
a Taylor expansion in a small parameter ε

an = ei(kln−ωt)εα
∑

j

εjAj(ξ, t2, t3, . . .),

where the amplitudes Aj depend only on “slow variables” (ξ, t2, t3, . . .), defined as

ξ = ε(ln − vgt), t2 = ε2t, t3 = ε3t, . . . .
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As we shall see and explain below in the non-resonant case α = 0, the dominant amplitude A1 will
satisfy the well known nonlinear Schrödinger equation (NLS equation), while in the resonant case
we have to take α = 1

2 and the dominant amplitudes A1, P1 will satisfy the Zakharov–Benney
equations [10,11]. For the phononic variable ρn we assume an expansion of the form

ρn =
∑

j

εj+1Pj(ξ, t2, . . .).

Introducing these expansions in the equations of motion for an and ρn in different orders of ε
we get:

In order ε1+α we get the dispersion relation

�ω = E − 2
∑

j

Jj cos klj

for the linearized system.
In order ε2+α the velocity vg in the expression of ξ is given by the group velocity (we denote

ωn = 1
n!

dnω(k)
dkn )

vg = ω1 =
∂ω

∂k
.

The next orders will represent constraints on the amplitudes A1, P1, . . . namely

i
∂A1

∂t2
+ ω2

∂2A1

∂ξ2
− χ

�
P1A1 = 0 (1)

in order ε3+α and

(v2
g − c2

p)
∂2P1

∂ξ2
=

χ

M
l2

∂2

∂ξ2
|A1|2 (2)

in order ε4. Here by cp =
√

w
M l we have denoted the sound velocity of the acoustic field.

The non-resonant case will correspond to the situation when vg �= cp. Then from (2)

P1 = −χ

w

1

1 − v2
g

c2p

|A1|2

that after substitution into (1) gives

i
∂A1

∂t2
+ ω2

∂2A1

∂ξ2
+ ν|A1|2A1 = 0, (3)

where ν = χ2

�M
1

1− v2
g

c2p

. This is the well-known NLS equation, a completely integrable system. For

ν > 0 (focusing case) it has solitonic solutions. This happens if vg < cp, and consequently the
soliton is a subsonic excitation.

The resonant case corresponds to vg � cp, and the condition can be realized if the group
velocity in the optical branch (excitonic branch) is equal to the phase velocity in the acoustic
one. In the multiple scales method we have to go to the order ε5 in the phonon variable, and
one obtains

∂P1

∂t2
= − χ

2Mvg
l2

∂|A1|2
∂ξ

. (4)
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The system of equations (1) and (4) represents the completely integrable Zakharov–Benney
system [10,11].

In the non-resonant case (α = 0), by going to higher order of approximation (ε4) the following
equation is obtained [12–19]

i
∂A2

∂t2
+ ω2

∂2A2

∂ξ2
+ ν(A2

1A
∗
2 + 2|A1|2A2) = −i

∂A1

∂t3
+ iω3

∂3A1

∂ξ3
. (5)

This is a linear non-homogeneous equation for the next amplitude A2. In the left-hand side we
recognize the linearized NLS equation, and the non-homogeneity in the right hand side depends
only on the dominant amplitude A1. It contains the unknown derivative of A1 with respect to
the next slow time t3. A secular behaviour of this equation is possible if in the rhs we identify
some members of the null space (symmetries) of the linearized NLS equation. It is easily seen
that the following symmetry appears in the rhs of (5).

σ3 = −
(

∂3A1

∂ξ3
+ 6c|A1|2 ∂A1

∂ξ

)
, c =

ν

2ω2
.

The secular behaviour is eliminated if the t3 dependence of A1 is determined by the equation

−∂A1

∂t3
+ ω3

(
∂3A1

∂ξ3
+ 6c|A1|2 ∂A1

∂ξ

)
= 0 (6)

that is the complex modified KdV equation, the next equation in NLS hierarchy. We remain
with

i
∂A2

∂t2
+ ω2

∂2A2

∂ξ2
+ ν

(
A2

1A
∗
2 + 2|A1|2A2

)
= −6iω3c|A1|2 ∂A2

∂ξ
(7)

which now is a linear non-homogeneous equation free of secularities [18]. In the Appendix both
equations (6) and (7) will be solved when A1 is given by one-soliton solution.

4 Statistical approach of the modulational instability

The modulational instability, also known as the Benjamin–Feir instability [20–23], has proved
to be a general process occurring in a large variety of physical situations. The phenomenon is
characteristic both for continuous and discrete systems and describes the exponential growth of
the amplitude of a (quasi) monochromatic wave propagating in a weakly nonlinear dispersive
medium. It is generally believed to be responsible for the formation of robust localized coherent
structures in these systems. We shall mainly focus our attention to the NLS equation (3), where
A(X, T ) is the slowly varying amplitude – considered as a random variable (here X and T are
the slow variables of the multiple scales method) and ω2, ν are the parameters associated with
the dispersion (ω2) and the cubic nonlinearity (ν). One constructs a kinetic equation for the
correlation function [24,25]

ρ(X1, X2) = 〈A(X1)A∗(X2)〉,
ā2(X) = 〈A(X)A∗(X)〉,

namely

i
∂ρ

∂t
+ ω2

(
∂2

∂X2
1

− ∂2

∂X2
2

)2

ρ + 2ν
[
ā2(X1) − ā2(X2)

]
ρ = 0.
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Further a Wigner–Moyal transform is used [26,27]. One introduces the new variables

X =
1
2
(X1 + X2), x = (X1 − X2)

and the Fourier transform

F (k, X, T ) =
1
2π

∫ +∞

−∞
e−ikxρ(x, X, T )dx.

We obtain

∂F

∂T
+ 2ω2k

∂F

∂X
+ 4ν

∞∑
n=0

(−1)n

22n+1(2n + 1)!
∂2n+1F

∂k2n+1

∂2n+1ā2

∂X2n+1
= 0.

A linear stability analysis is done considering

F (k, X, Y ) = F0(k) + εF1(k, X, T ),

ā2(X, T ) = ā2
0 + εā2

1(X, T ),

ā2
0 =

∫
F0(k)dk, ā2

1 =
∫

F1(k, X, T )dk.

The linearized equation for F1 writes

∂F1

∂T
+ 2ω2k

∂F1

∂X
+ 4ν

∞∑
n=0

(−1)n

22n+1(2n + 1)!
∂2n+1F0

∂k2n+1

∂2n+1ā2
1

∂X2n+1
= 0.

If a plane wave solution for F (k, X, T ) is considered

F1(k, X, T ) = f1(k)ei(KX−ΩT ).

the following integral stability equation is easily found

1 +
ν

Kω2

∫ +∞

−∞

F0(k + K
2 ) − F0(k − K

2 )
k − iλ

dk = 0. (8)

Here we assumed Ω purely imaginary, Ω = iΩi, and λ = Ωi
2Kω2

. If we assume ρ0(x) to be an even
function of x the previous equation is easily transformed into

1 +
iν

Kω2

∫ x

0
ρ0(x)e−λx

(
ei K

2
x − e−i K

2
x
)

dx = 0.

Several forms for the initial condition F0 will be analyzed. As a first example let us consider
a δ-spectrum

F0(k) = ā2
0δ(k).

It corresponds to a constant initial ρ0(x). The integration in (8) is straightforward giving

Ωi = Kω2

(
4ν

ω2
ā2

0 − K2

) 1
2

.

An instability exists if both ω2 and ν have the same sign (this situation corresponds to the

focusing case of the NLS equation) and if K < 2
(

ν
ω2

ā2
0

) 1
2
. As ā2

0 is a small quantity this
condition corresponds to a “long wave limit”. The first condition on the sign of ω2 and ν is
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a general one, and we assume it to be satisfied in all the cases we shall discuss. Also we can
consider ν = 2ω2 = 1, a condition which corresponds to reduction of the NLS equation to the
canonical form

i
∂A

∂T
+

1
2

∂2A

∂X2
+ |A|2A = 0.

The next example is a Lorentzian spectrum

F0(k) =
ā2

0

π

p

p2 + k2
, ρ0(x) = ā2

0e
−px.

It is straightforward to show that in this case

Ωi = K

(√
2 − K2

4
− p

)
.

In this expression it is easily seen that the instability depends also on the correlation length p

of the initial distribution, not only of the wave number K. If p is greater than
√

2 − K2

4 the
system becomes stable. This is similar with the well-known phenomenon of Landau damping in
plasma physics [28].

5 Conclusions

In summary the main conclusions of the present paper are:
• The multiple scales method is used for the analysis of the 1-D Davydov model. It is shown

that in the non-resonant case the NLS equation is obtained while in the resonant case the
Zakharov–Benney system is found.

• In a higher order approximation, for the non-resonant case, in order for the secular be-
havior to be eliminated the dominant amplitude has to satisfy the next equation in the
NLS hierarchy (complex mKdV equation).

• The MI of the NLS equation was studied using a statistical approach. As is seen from the
Lorentzian case, the statistical properties have a great influence on the development of MI.
If the width of the initial 2-point correlation function is too small (p is too large) then the
MI is suppressed.
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Appendix

The equation (6) and (7) will be solved when A1 is the one-soliton solution. With a suitable sca-
ling of the amplitude and the temporal variable (T = 2ω2t2, Ψ =

√
ν

2ω2
A1) the NLS equation (3)

can be written in the canonical form

i
∂Ψ
∂T

+
1
2

∂2Ψ
∂ξ2

+ |Ψ|2Ψ = 0. (A.1)

Also with scaling the t3 variable as τ = ω3t3 the complex mKdV equation (6) writes

−∂Ψ
∂τ

+
∂3Ψ
∂ξ3

+ 6|Ψ|2 ∂Ψ
∂ξ

= 0.
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It is convenient to scale the amplitude A2 in the same way as A1 (φ =
√

ν
2ω2

A2) and then

equation (7) becomes

i
∂φ

∂T
+

1
2

∂2φ

∂ξ2
+ (Ψ2φ∗ + 2|Ψ|2φ) = −iα|Ψ|2 ∂φ

∂ξ
, α = 3

ω3

ω2
. (A.2)

The one-soliton solution of the NLS equation (A.1) is

Ψ = 2v
e−iΦ

cosh θ
,

where

Φ = 2uξ + 2(u2 − v2)T + Φ0,

θ = 2v(X − X0 + 2uT ).

Here u, v are the real and imaginary parts of the eigenvalue of the spectral problem, and they
characterize the velocity and the amplitude of the soliton respectively.

As all the equations in the NLS hierarchy have the same spectral problem, the τ dependence
in Ψ can appear only in the initial positions and phases, characterizing the unperturbed solution.
For the one-soliton solution, only X0 and Φ0 will become dependent on τ . It is easy to show
that

dΦ0

dτ
= 8u(u2 − 3v2),

dX0

dτ
= 4(3u2 − v2)

leading to a linear dependence of Φ0 and X0 on the slow-time variable τ.

Concerning the solution of (A.2), let us consider the case of the solution at rest (u = 0).
With the new variable ρ = tanh 2vξ the equation (A.2) transforms into the equation for the
associated Legendre polynomials, with a non-homogeneity in the right hand side, which can be
solved exactly [16].

In the simple case of the one-soliton solution we see that in the next order of approximation
the initial phase and position of the soliton will depend on the next slow time variable t3, the
effect which cannot be obtained by a perturbation treatment. Also the second amplitude can
be determined exactly, and can be expressed through associate Legendre polynomials.

[1] Davydov A.S. and Kislukha N.I., Solitons in one-dimensional molecular chains, Phys. Stat. Sol. (B), 1973,
V.59, 465–470.

[2] Davydov A.S., Eremko A.A. and Sergienko A.I., Solitons in alpha-spiral protein molecules, Ukr. Fiz. Zh.,
1978, V.23, 993–997.

[3] Davydov A.S., Solutions in molecular systems, Physica Scripta, 1979, V.20, 387–394.

[4] Hyman J.M., McLaughlin D.W. and Scott A.C., On Davydov’s alpha-helix soliton, Physica D, 1981, V.3,
23–44.

[5] Scott A.C., Solitary waves in biology, in Nonlinear Excitations in Biomolecules, Proceedings of Les Houches
School, 1984, 249–268.

[6] Davydov A.S., Solitons in molecular systems, Dordrecht, Reidel, 1985.

[7] Primatarova M.T. and Kamburova R.S., Soliton dynamics in three coupled molecular chains, Phys. Stat.
Sol. (B), 2000, V.217, 769–776.

[8] Taniuti T. and Wei C.C., Reductive perturbation method in nonlinear wave propagation, J. Phys. Soc.
Japan, 1968, V.21, 209–212.

[9] Nayfeh A., Perturbation methods, Willey, New York, 1973.

[10] Zakharov V.E., Hamiltonian approach to the description of non-linear plasma phenomena, Physics Reports,
1985, V.129, N 1, 285–366.



Modulational Instability of Davydov’s Model 1509

[11] Benney D.J., A general theory for interactions between short and long waves, Stud. Appl. Math., 1977, V.56,
81–94.

[12] Grecu D., Visinescu A. and Carstea A.S., Solitonic excitations in biologic 1-D molecular systems, Proceedings
of Isotopic and Molecular Processes PIM 1999, Studia Universitatis Babes-Bolyai, Physica, 2000, Special
issue, 129–135.

[13] Grecu D. and Visinescu A., Multiscale analysis of a Davydov model with an harmonic long range interaction
of Kac–Baker type, Bulgarian J. of Phys., 2000, V.27, 1–5.

[14] Grecu D., Visinescu A. and Carstea A.S., Beyond nonlinear Schrödinger equation approximation for an
anharmonic chain with harmonic long range interactions, J. Nonlinear Math. Phys., 2001, V.8, Suppl.,
139–144.

[15] Visinescu A., Grecu D. and Carstea A.S., Solitonic model for energy transport in quasi-1-D biological
systems, Rom. J. Physics, 2002, V.47, 509–518.

[16] Grecu D. and Visinescu A., Modulational instability in some nonlinear 1-D lattices and soliton generation,
Annals Univ. Craiova, Physics AUC, 2002, V.12, Part III, 129–149.

[17] Visinescu A. and Grecu D., Statistical approach of the modulational instability of the discrete self-trapping
equation, European Phys. J. B, 2003, V.34, 225–231; nlin.SI/0212043.

[18] Kraenkel R.A., Manna M.A. and Pereira J.G., The Korteweg–de Vries hierarchy and long water-waves,
J. Math. Phys., 1995, V.36, 307–320.

[19] Degasperis A., Manakov S.V. and Santini P.M., Multiple-scale perturbation beyond the nonlinear Schrö-
dinger equation, Physica D, 1997, V.100, 187–211.

[20] Benjamin T.B. and Feir J.E., The disintegration of wave-trains on deep water, J. Fluid. Mech., 1967, V.27,
417–430.

[21] Benney D.J. and Newell A.C., The propagation of nonlinear waves envelope, J. Math. and Phys., 1967, V.46,
133–139.

[22] Stuart D.J. and DiPrima R.C., The Ekhaus and Benjamin–Feir resonance mechanisms, Proc. Roy. Soc.
London A, 1978, V.362, 27–41.

[23] Dodd R.K., Eilbeck J.C., Gibbon J.D. and Morris H.C., Solitons and nonlinear wave, Academic Press, 1982.

[24] Alber I.E., The effects of randomness on the stability of two-dimensional surface wavetrains, Proc. Roy. Soc.
London A, 1978, V.363, 525–546.

[25] Onorato M., Osborne A., Serio M. and Fedele R., Landau damping and coherent structures in narrow-banded
1+1 deep water gravity waves, nlin.CD/0202026.

[26] Wigner E., On the quantum correction for thermodynamic equilibrium, Phys. Rev., 1932, V.40, 749–759.

[27] Moyal J.E., Quantum mechanics as a statistical theory, Proc. Cambridge Phyl. Soc., 1949, V.45, 99–124.

[28] Landau L.D., On the vibrations of electric plasmas, J. Phys. USSR, 1946, V.10, 25–34.


