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The generalized Hénon–Heiles system has been considered. In two nonintegrable cases with
the help of the Painlevé test new special solutions have been found as Laurent series, de-
pending on three parameters. The obtained series converge in some ring. One of parameters
determines the singularity point location, other parameters determine coefficients of series.
For some values of these parameters the obtained Laurent series coincide with the Laurent
series of the known exact solutions. The Painlevé test can be used not only to construct
local solutions as the Laurent series but also to find elliptic solutions.

1 The Painlevé property and integrability

A Hamiltonian system in a 2s-dimensional phase space is called completely integrable (Liouville
integrable) if it possesses s independent integrals that commute with respect to the associated
Poisson bracket. When this is the case, the equations of motion are (in principal, at least)
separable and solutions can be obtained by the method of quadratures.

When some mechanical problem is studied, time is assumed to be real, whereas the integra-
bility of motion equations depends on the behavior of their solutions as functions of complex
time. S.V. Kovalevskaya was the first who proposed [1] to interpret time as a complex variable
and to require that solutions of mechanical problems have to be single-valued functions mero-
morphic in the entire complex plane. This idea gave a remarkable result: S.V. Kovalevskaya
discovered a new integrable case (nowadays known as the Kovalevskaya’s case) for the motion
of a heavy rigid body about a fixed point [1] (see also [2,3]). The Kovalevskaya’s result demon-
strated that the analytic theory of differential equations can be fruitfully applied to mechanical
and physical problems. The important stage of development of this theory was the Painlevé
classification of ordinary differential equations (ODEs) with respect to the types of singularities
of their solutions [4].

Let us formulate the Painlevé property for ODEs. Solutions of a system of ODEs regarded as
analytic functions may have isolated singularity points [5,6]. A singularity point of a solution is
said to be critical (as opposed to noncritical) if the solution is multivalued (single-valued) in its
neighborhood and movable if its location depends on initial conditions. The general solution of
an ODE of order N is the set of all solutions mentioned in the existence theorem of Cauchy, i.e.
determined by the initial values. It depends on N arbitrary independent constants. A special
solution is any solution obtained from the general solution by giving values to the arbitrary
constants. A singular solution is any solution which is not special, i.e. which does not belong to
the general solution.

Definition 1. A system of ODEs has the Painlevé property if its general solution has no
movable critical singularity point [4].
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Investigations of many dynamical systems [7] show that systems with the Painlevé proper-
ty are completely integrable. Arguments, which clarify the connection between the Painlevé
analysis and the existence of motion integrals, are presented in [8, 9]. At the same time the
integrability of an arbitrary system with the Painlevé property has yet to be proved. There is
no algorithm for construction of additional integrals by the Painlevé analysis. It is easy to give
an example of an integrable system without the Painlevé property [10]. The system with the
Hamiltonian H = 1

2p2 + f(x), where f(x) is a polynomial whose power is not lower than five, is
trivially integrable, but its general solution is not a meromorphic function.

The study of complex-time singularities is a useful tool for analysis of not only integrable
systems, but also of chaotic dynamics [11]. The Painlevé analysis can be connected to the normal
form theory [12].

The Painlevé test is any algorithm that checks some necessary conditions for a differential
equation to have the Painlevé property. The original algorithm, developed by P. Painlevé and
used by him to find all the second order ODEs with the Painlevé property, is known as the
α-method. The method of S.V. Kovalevskaya is not as general as the α-method, but much
simpler. The remarkable property of this test is that it can be checked in a finite number of
steps. This test can only detect the occurrence of logarithmic and algebraic branch points. Up
to the present there is no general finite algorithmic method to detect the occurrence of essential
singularities. Different variants of the Painlevé test are compared in [13, R. Conte paper].

Developing the Kovalevskaya method [1] further, M.J. Ablowitz, A. Ramani and H. Segur
constructed a new algorithm of the Painlevé test for ODEs [14]. They also were the first to
point out the connection between the nonlinear partial differential equations (PDEs) that are
solvable by the inverse scattering transform method, and ODEs with the Painlevé property.
Subsequently the Painlevé property for PDEs was defined and the corresponding Painlevé test
(the WTC procedure) was constructed [15, 16] (see also [13, 17]). With the help of this test it
was found that all PDEs solvable by inverse scattering transforms, have the Painlevé property,
maybe after some change of variables. For many integrable PDEs, for example, the Korteweg–
de Vries equation [7], the Bäcklund transformations and the Lax representations result from
the WTC procedure [16,18]. For certain nonintegrable PDEs special solutions were constructed
using this algorithm [19,20].

The algorithm for finding of special solutions for ODEs into the form of a finite expansion
in powers of unknown function ϕ(t − t0) was constructed in [21, 22]. The function ϕ(t − t0)
and coefficients have to satisfy some system of ODE, often simpler than an initial one. This
method has been used to construct exact special solutions for some nonintegrable ODEs [23,24].
With the help of the perturbative Painlevé test [17] a four-parameter generalization of an exact
three-parameter solution of the Bianchi IX cosmological model was constructed [25].

2 The Hénon–Heiles Hamiltonian

In the 1960s the models of the star motion in an axial-symmetric and time-independent poten-
tials were developed to show either existence or absence of the third integral for some polyno-
mial potentials. Due to the symmetry of the potential the considered system is equivalent to
two-dimensional one. To clarify the question of the existence of the third integral Hénon and
Heiles [26] considered behavior of numerically integrated trajectories. Emphasizing that their
choice does not proceed from experimental data, they have proposed the Hamiltonian

H =
1
2

(
x2

t + y2
t + x2 + y2

)
+ x2y − 1

3
y3,

because on the one hand, it is analytically simple; this makes the numerical computations of
trajectories easy; on the other hand, it is sufficiently complicated to give trajectories that are
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far from trivial. Indeed, for low energies the Hénon–Heiles system appears to be integrable,
in so much as trajectories (numerically integrated) always lay on well-defined two-dimensional
surfaces. On the other hand, for high energies many of these integral surfaces are destroyed, it
points to absence of the third integral.

The generalized Hénon–Heiles system is described by the Hamiltonian:

H =
1
2

(
x2

t + y2
t + λx2 + y2

)
+ x2y − C

3
y3 (1)

and the corresponding system of the motion equations:

xtt = −λx − 2xy,

ytt = −y − x2 + Cy2, (2)

where xtt ≡ d2x
dt2

and ytt ≡ d2y
dt2

, λ and C are numerical parameters.
The generalized Hénon–Heiles system is a model, not only actively investigated by various

mathematical methods (see [27] and references therein), but also widely used in physics, in
particular, in gravitation [28, 29]. The models, described by the Hamiltonian (1) with some
additional nonpolynomial terms, are actively studied as well [30–32].

Due to the Painlevé analysis the following integrable cases of (2) were found:

(i) C = −1, λ = 1,
(ii) C = −6, λ is an arbitrary number,
(iii) C = −16, λ = 1/16.

The general solutions in the analytic form are known only in integrable cases [31, 32], in
other cases not only four-, but even three-parameter exact solutions have yet to be found.
In nonintegrable cases local four-parameter solutions as converging psi-series solutions were
found [33] for all values of the parameter C, except C = −2. The Ablowitz–Ramani–Segur
algorithm of the Painlevé test appears very useful to find such values of parameter at which
three-parameter solutions can be expanded into formal Laurent series and to construct these local
solutions. The knowledge of local solutions can be used to find solutions in the analytical form.

Let us assume that the behavior of solutions in a sufficiently small neighborhood of the
singularity point is algebraic, i.e., x and y tend to infinity as

x = aα(t − t0)α and y = bβ(t − t0)β ,

where α, β, aα and bβ are some constants.
The Painlevé test gives all information about behavior of solutions in the neighborhood of the

singularity point (see, for example, [7]). There exist two possible variants of dominant behavior
and resonance structure of solutions of the generalized Hénon–Heiles system [7,33]:

Case 1: Case 2: (β < �e(α))

α = −2, α = 1±
√

1−48/C

2 ,
β = −2, β = −2,
aα = ±3

√
2 + C, aα = c1 (an arbitrary number),

bβ = −3, bβ = 6
C ,

r = −1, 6, 5
2 −

√
1−24(1+C)

2 , 5
2 +

√
1−24(1+C)

2 r = −1, 0, 6, ∓
√

1 − 48
C

The values of r denote resonances: r = −1 corresponds to arbitrary parameter t0; r = 0 (in
the Case 2) corresponds to arbitrary parameter c1. Other values of r determine powers of t, to
be exact, tα+r for x and tβ+r for y, at which new arbitrary parameters can appear.



Construction of Special Solutions with the Help of the Painlevé Analysis 507

For integrability of system (2) all values of r have to be integer and all systems with zero
determinants have to have solutions at any values of free parameters. It is possible only in the
integrable cases (i)–(iii).

Those values of C, at which r are integer numbers either only in the Case 1 or only in
the Case 2, are of interest for search of special three-parameter solutions. Those cases where
an additional negative resonance is present likely correspond to singular, rather the general,
solutions [7].

Let us consider all cases, when there exist special (not singular) solutions, representable as
three-parameter Laurent series (maybe, multiplied on

√
t − t0). From the requirement that all

values of r but one are integer and nonnegative numbers, we obtain the following values of C:

C = −1, C = −4/3 (the Case 1), C = −16/5, C = −6, C = −16 (the Case 2, α = 1−
√

1−48/C

2 )
and C = −2, when two types of singular behavior coincide.

At C = −2 (in the Case 1) aα = 0. This is the consequence of the fact that, contrary
to our assumption, the behavior of the solution in the neighborhood of a singularity point is
not algebraic, because its dominant term includes logarithm [7]. At C = −6 and any value
of λ exact four-parameter solutions are known. In cases C = −1 and C = −16 substitution of
unknown function as Laurent series gives the equations in λ: accordingly λ = 1 and λ = 1/16;
hence, in nonintegrable cases special three-parameter local solutions have to include logarithmic
terms. Single-valued three-parameter special solutions can exist only in two nonintegrable cases,
at C = −16/5 and at C = −4/3.

3 New solutions

Let us consider the Hénon–Heiles system with C = −16/5. In the Case 1 some values of r are
not rational. To find special three-parameter solutions we consider the Case 2. In this case
α = −3/2 and r = −1, 0, 4, 6, hence, in the neighborhood of the singularity point t0 we have
to seek x in such a form that x2 can be expanded into Laurent series, beginning with (t− t0)−3.
Let t0 = 0, substituting

x =
√

t


c1t

−2 +
∞∑

j=−1

ajt
j


 and y = −15

8
t−2 +

∞∑
j=−1

bjt
j (3)

in (2), we obtain the following sequence of linear system in ak and bk:

(
k2 − 4

)
ak + 2c1bk = −λak−2 − 2

k−1∑
j=−1

ajbk−j−2,

((k − 1)k − 12)bk = −bk−2 −
k−1∑

j=−2

ajak−j−3 − 16
5

k−1∑
j=−1

bjbk−j−2. (4)

The determinants of the systems (4) corresponding to k = 2 and k = 4 are equal to zero. To
determine a2 and b2 we have the following system:

c1

(
557056c8

1 + (15552000λ − 4860000)c4
1 + 864000000b2

+ 108000000λ2 − 67500000λ + 10546875
)

= 0,

818176c8
1 + (15660000λ − 4893750)c4

1 − 810000000b2 − 6328125 = 0. (5)

It is easy to see that this system contains no terms proportional to a2, therefore, a2 is the
new constant of integration. We discard the solution with c1 = 0 and obtain the system in c4

1
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and b2. System (5) has solutions only if

c4
1 =

1125
(
525 − 1680λ ± 4

√
35(2048λ2 − 1280λ + 387)

)
167552

.

We obtain new constant of integration a2, but we must fix c1, so number of constants of
integration is equal to 2. It is easy to verify that b4 is an arbitrary parameter, because the corre-
sponding system is equivalent to one linear equation. System (2) is invariant under exchange x
to −x, so we obtain four different local solutions which depend on three parameters, namely t0,
a2 and b4. With the help of some computer algebra system, for example, REDUCE [34], these
solutions can be obtained with arbitrary accuracy. For the case λ = 1/9 the obtained Laurent
series are presented in [35].

At C = −4/3 the situation is similar. In the Case 1 we have r = −1, 1, 4, 6. Substituting

x =
√

6t−2 +
∞∑

k=−1

dkt
k and y = −3t−2 +

∞∑
k=−1

fkt
k (6)

in system (2), we receive a sequence of linear systems in dk and fk:

((k − 1)k − 6)dk + 2
√

6fk = −λdk−2 − 2
k−1∑

j=−1

djfk−j−2,

2
√

6dk + ((k − 1)k − 8)fk = −fk−2 −
k−1∑

j=−1

djdk−j−2 − 4
3

k−1∑
j=−1

fjfk−j−2. (7)

The determinants of the systems (7) corresponding to k = −1, 2, 4 are equal to zero. The first
system (k = −1) always has infinite number of solutions and f−1 is a parameter. We have to fix
this parameter to solve the system corresponding to k = 2. This system has solutions only if

f2
−1 =

105 − 140λ ±
√

7
(
1216λ2 − 1824λ + 783

)
385

or f−1 = 0.

At k = 4 system (7) is reduced to one equation. Thus, at C = −4/3 we have five three-
parameter (t0, f2 and f4) solutions.

The convergence of all the Laurent series solutions on some real time interval have been proved
in [33]. For the obtained solutions it is easy to find conditions at which the series converge at
0 < |t| � 1 − ε, where ε is any positive number. Our series converge in the above-mentioned
ring, if ∃N and ∃M such that ∀n > N |an| � M and |bn| � M . Let |an| � M and |bn| � M
for all −1 < n < k, then (in the case C = −16/5) from (4) we obtain:

|ak| � 2M(k + 1) + |λ| + 2|c1|
|k2 − 4| M, |bk| � 21Mk + 26M + 5

5|k2 − k − 12| M.

It is easy to see that there exists such N that if |an| � M and |bn| � M for −1 � n � N ,
then |an| � M and |bn| � M for −1 � n < ∞. So one can prove the convergence, analyzing
values of a finite number of the first coefficients of series. For C = −4/3 it is easy to obtain the
analogous result.

4 Global single-valued solutions

We have found some local three-parameter solutions. To seek for the global single-valued solu-
tions we transform system (2) into the fourth order equation [36,37]:

ytttt = (2C − 8)ytty − (4λ + 1)ytt + 2(C + 1)y2
t +

20C

3
y3 + (4Cλ − 6)y2 − 4λy − 4H. (8)
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Point out that the energy of the system H and initial data y0, y0t, y0tt and y0ttt are dependent.
If y0tt = Cy2

0 − y0, then there exists the connection y0ttt = 2Cy0y0t − y0t, in opposite case H is
a function of initial data.

There are some reasons to seek three-parameter solutions of equation (8) in terms of elliptic
functions. In 1999 E.I. Timoshkova [37] found that the general solution of the following equation:

y2
t = Ãy3 + B̃y2 + C̃y + D̃ + G̃y5/2 + Ẽy3/2

with some values of constants Ã, B̃, C̃, D̃, G̃ and Ẽ , is one-parameter solution of equation (8) in
each of two above-mentioned nonintegrable cases (C = −4/3 or C = −16/5, λ is an arbitrary
number). If G̃ = 0 and Ẽ = 0 we obtain the well-known solutions in terms of the Weierstrass
elliptic function. Solutions with G̃ �= 0 or Ẽ �= 0 are derived only at D̃ = 0, therefore, substitution
y(t) = �(t)2 gives:

�2
t =

1
4
(Ã�4 + G̃�3 + B̃�2 + Ẽ� + C̃ )

. (9)

Two-parameter solutions y(t) = �(t)2+P0, where P0 is an arbitrary constant and �(t) satisfies
equation (9), were obtained in [38,39]. These solutions are the following elliptic functions

y(t − t0) =
(

a℘(t − t0) + b

c℘(t − t0) + d

)2

+ P0, ad − bc = 1, (10)

where ℘(t − t0) is the Weierstrass elliptic function, a, b, c and d are some constants. The
parameter P0 defines the energy of the system. There exist two different elliptic solutions for
each possible pair of values of C and λ.

Let us consider the three-parameter solutions that were obtained at C = −4/3. If we choose
f−1 = 0, then we obtain the solution which generalizes the well-known two-parameter solution
in terms of Weierstrass elliptic functions. Other solutions generalize two-parameter solutions,
obtained in [39]. The coefficient f−1 is a residue of y. The sum of residues of an elliptic function
in its parallelogram of periods has to be zero [40], hence, two local solutions with opposite signs
of f−1 correspond to one global elliptic solution. The obtained local three-parameter solution
generalizes the Laurent series of the two-parameter elliptic solutions in the form (10).

For C = −16/5 we obtained four local solutions, which generalize two global elliptic solutions
in the form (10). So, each obtained local three-parameter solution generalize the Laurent series of
some two-parameter elliptic solution, and we can assume that unknown global three-parameter
solutions are elliptic functions.

Of course, solutions, which are single-valued in the neighborhood of one singularity point,
can be multivalued in the neighborhood of another singularity point. So, we can only assume
that global three-parameter solutions are single-valued. If we assume this and, moreover, that
these solutions are elliptic functions (or some degenerations of them), then we can seek them as
solutions of some polynomial first order equations. The classical theorem, which was established
by Briot and Bouquet [41], proves that if the general solution of the autonomous polynomial
first order ODE is single-valued, then this solution is either an elliptic function, or a rational
function of eγx, γ being some constant, or a rational function of x. Note that the third case is
a degeneracy of the second one that in its turn is a degeneracy of the first one. At the same
time, there exist elementary functions, for example, the function f(t) = t + sin(t) that are not
solutions of any first order polynomial ODE.

A second result, of immediate practical use, is due to P. Painlevé [4]. He has proved that if
the general solution of the autonomous polynomial first order ODE is single-valued, then the
necessary form of this ODE is

F (y, yt) ≡
m∑

k=0

2m−2k∑
j=0

hjky
jyt

k = 0, h0m = 1, (11)

in which m is a positive integer number and the hjk are constants.
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In 2003 R. Conte and M. Musette have proposed a new method to find elliptic solutions [42].
This method is based on the Painlevé test and uses the Laurent series expansion to find the
analytic form of elliptic solutions. Rather than substitute the first-order equation (11) into
equation (8) one can substitute the found Laurent series of solutions of equation (8), for example,
either solution (3) or solution (6), into equation (11) and obtain a linear system in hjk. This
method is more powerful than the traditional method and allows in principle to find all elliptic
solutions. I hope that the use of this method allows finding of the three-parameter elliptic
solutions.

5 Conclusion

Using the Painlevé analysis one can not only find integrable cases of dynamical systems, but
also construct special solutions in nonintegrable cases.

We have found the special solutions of the Hénon–Heiles system with C = −16/5 and C =
−4/3 as Laurent series depending on three parameters. For some values of these parameters
the obtained solutions coincide with the known exact periodic solutions. There are no obstacles
to existence of three-parameter single-valued solutions, so the probability of finding of exact
three-parameter solutions that generalize the solutions obtained in [37,39] is high.

The author is grateful to F. Calogero, R. Conte, V.F. Edneral, A.K. Pogrebkov and E.I. Ti-
moshkova for valuable discussions. This work was supported by Russian Federation President’s
Grants NSh–1685.2003.2 and NSh–1450.2003.2 and by the grant of the scientific Program “Uni-
versities of Russia” UR.02.03.002.
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[12] Goriely A., Painlevé analysis and normal forms theory, Physica D, 2001, V.152–153, 124–144.
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