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The multi-centre metrics are a family of Euclidean solutions of the empty space Einstein
equations with self-dual curvature. We consider the Hamiltonian dynamics generated by
the geodesic flow along the U(1) fibers and obtain several metrics in this class which do
exhibit an extra conserved quantity quadratic in the momenta. The corresponding systems
are shown to be classically integrable.

1 Introduction

The integrability of the geodesic flow for the multi-centre metrics began with the discovery
of the generalized Runge–Lenz vector for the Taub–NUT metric [1] and the derivation of its
Killing–Stäckel tensor in [2]. It was generalized to the Eguchi–Hanson metric in [3] where the
Hamilton–Jacobi equation was separated. A further progress led to the integrability proof of
the full 2-centre metric [2] which includes Taub–NUT and Eguchi–Hanson as particular cases.
Despite these successes, a systematic analysis of the full family of the multi-centre metrics was
still lacking. We will present a new approach which will determine which metrics, in this class,
do exhibit a quadratic Killing–Stäckel tensor leading to classical integrability.

2 Basic facts on the multi-centre metrics

These Euclidean and four dimensional metrics on M4 have at least one Killing vector K̃ = ∂t.
Fibrating along this Killing vector, we have for metric

g =
1
V

(dt + Θ)2 + V d�x · d�x, V = V (x), Θ = Θi(x) dxi, (1)

where the xi are the coordinates of the subspace orthogonal to the U(1) fibers. The metric (1) is
a solution of the empty space Einstein equations provided that we have the monopole equation

dV = � dΘ, (2)

where the Hodge star refers to the flat 3-dimensional metric. Notice that the integrability
condition for the monopole equation is ∆V = 0. So to each solution of Laplace equation in
a 3-dimensional flat space there corresponds a Ricci-flat four-dimensional metric: we have an
exact linearization of the empty space Einstein equations!

These metrics have a richer geometry since they are endowed with a triplet of complex
structures, with associated closed 2-forms

Ω(−)
i = E0 ∧ Ei − 1

2
εijk Ej ∧ Ek = (dt + Θ) ∧ dxi − 1

2
V εijk dxj ∧ dxk. (3)

It follows that the multi-centre metrics are hyper-Kähler, hence Ricci-flat.
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As shown by [4], in the hyper-Kähler case, any Killing vector has to be either tri-holomorphic
or holomorphic with respect to the triplet of complex structures (3). For instance K̃ is tri-
holomorphic and this means that

L̃
K

Ω(−)
i = 0, i = 1, 2, 3,

whereas for an holomorphic Killing vector K we would have

L
K

Ω(−)
1 = Ω(−)

2 , L
K

Ω(−)
2 = −Ω(−)

1 , L
K

Ω(−)
3 = 0.

The following drawings display the potentials for the general 2-centre metrics. For generic
parameters we have two Killing vectors (the subscripts H or T refer to its holomorphic or tri-
holomorphic nature). For special values of the parameters the isometry algebra is enhanced
to u(2) leading to either Taub–NUT or to Eguchi–Hanson metrics.


• V = v0 +

m1

|�x − c�ez| +
m2

|�x + c�ez|
• isometries : u(1)H ⊕ u(1)T
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m1 = m2 → m m1 = m2 → 1

c → 0 v0 → 0

Taub–NUT Eguchi–Hanson


• V = v0 +
m

|�x|
• isometries : su(2)H ⊕ u(1)T

• a breaks su(2)T

• flat iff v0 = 0 or m = 0




• V =
1

|�x − c�ez| +
1

|�x + c�ez|
• isometries : u(1)H ⊕ su(2)T

• c breaks su(2)H

• flat iff c = 0
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2.1 Geodesic flow

The geodesic flow is the Hamiltonian flow of the metric considered as a function on the cotangent
bundle of M4. Using the coordinates (t, xi) we will write a cotangent vector as

Πi dxi + Π0 dt,

and the symplectic form is

dxi ∧ dΠi + dt ∧ dΠ0.

We take for Hamiltonian

H =
1
2

gµν Πµ Πν ==
1
2

(
1
V

(Πi − Π0 Θi)2 + V Π2
0

)
.

For geodesics orthogonal to the U(1) fibers and affinely parametrized by λ the equations for
the flow allow on the one hand to express the velocities

ṫ ≡ dt

dλ
=

∂H

∂Π0
=

(
V +

Θ2

V

)
Π0 − ΘiΠi

V
,

ẋi ≡ dxi

dλ
=

∂H

∂Πi
=

1
V

pi, pi = Πi − Π0 Θi, (4)

and on the other hand to get the dynamical evolution equations

Π̇0 = −∂H

∂t
= 0, q ≡ Π0 =

(ṫ + Θi ẋi)
V

, (5)

and

Π̇i = −∂H

∂xi
=⇒ ṗi =

(
H

V
− q2

)
∂iV +

q

V
(∂iΘs − ∂sΘi) ps. (6)

Relation (5) expresses the conservation of the charge q, a consequence of the U(1) isometry of
the metric. For the multi-centre metrics, use of relation (2) brings the equations of motion (6)
to the nice form

�̇p =
(

H

V
− q2

)
�∇V +

q

V
�p ∧ �∇V. (7)

The conservation of the energy

H =
1
2

(
p2

i

V
+ q2 V

)
=

V

2
(
ẋ2

i + q2
)

=
1
2

gµν ẋµ ẋν

is obvious since it expresses the constancy of the length of the tangent vector ẋµ along a geodesic.
Hence at this stage we have already obtained two conserved quantities: q = Π0 and H. Two

more quantities are needed for integrability.

2.2 Killing–Stäckel tensors and their conserved quantities

A Killing–Stäckel (KS) tensor is a symmetric tensor Sµν which satisfies

∇(µ Sνρ) = 0. (8)

Let us observe that if K and L are two (possibly different) Killing vectors their symmetrized
tensor product K(µ Lν) is a KS tensor. So we will define irreducible KS tensors as the ones
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which cannot be written as linear combinations, with constant coefficients, of symmetrized
tensor products of Killing vectors.

For a given KS tensor Sµν the quadratic form of the velocities:

S = Sµν ẋµ ẋν (9)

is preserved by the geodesic flow.
In all what follows we will look for KS tensors preserved by Lie dragging along the tri-

holomorphic Killing vector:

L̃
K

Sµν = 0, K̃ = ∂t,

and we will consider generic values of H and q �= 0.
Let us examine more closely the structure of the conserved quantity induced by such a KS

tensor. Expanding the sums in (9) and using the relations (4) we obtain the following structure
for the conserved quantity:

S = Aij(xk) pi pj + 2q Bi(xk) pi + C(xk), (10)

where the various unknown functions, as a consequence of our hypotheses, are independent of
the coordinate on the U(1) fiber.

It is interesting to notice that the knowledge of S is equivalent to the knowledge of the KS
tensor.
Imposing the conservation of S under the geodesic flow gives the following equations1

a) q · L
B

V = 0,

b) ∂(k Aij) = 0,

c) q(∂(i Bj) − As(i εj)su ∂uV ) = 0,

d) ∂i C + 2
(
H − q2 V

)
Ais ∂s V − 2 q2 εist Bs ∂tV = 0. (11)

The relation (11a) calls for a spatial Killing vector for the potential V. However it could well
be that V has no symmetry at all. In this event we must have Bi = 0. Then relation (11c) can
be written

[A, R] = 0, (R)ij = εisj ∂s V.

Since V has no Killing the matrix R is a generic matrix in the Lie algebra so(3). By Schur
lemma it follows that A has to be proportional to the identity matrix and this does trivialize
the corresponding conserved quantity S. So the potential must have at least one extra spatial
Killing vector L (notice that L lifts up to an isometry of the 4 dimensional metric).

The full discussion and integration of the system (11) has been worked out in [5] and the
results can be classified according to wether the extra Killing vector is holomorphic or tri-
holomorphic. For each potential the detailed form of the conserved quantity induced by the
Killing–Stäckel tensor has been determined. Let us state these results.

3 One extra holomorphic Killing vector

We can take for extra spatial Killing vector L̂ = x∂y − y∂x. Then the metrics with the following
potentials will exhibit a quadratic Killing–Stäckel tensor:

1Since H and q take generic values, the quantity H − q2V does not vanish identically.
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1. The 2-centre metric with

V = v0 +
m1

r+
+

m2

r−
, r± =

√
x2 + y2 + (z ± c)2.

The conserved quantity is

SI = �L 2 + c2 p2
z + 2 qc ∆ Lz + 2cz ∆

(
H − q2V

) − q2r2∆2, r2 = x2 + y2 + z2,

with

Li = εijk xj pk, ∆ =
m1

r+
− m2

r−
.

which we have checked to be in full agreement with [2].
2. A first dipolar breaking of Taub–NUT with

V = v0 +
m

r
+ F

z

r3
, r =

√
x2 + y2 + z2,

which is, in fact, the singular limit c → 0 of the previous case. The conserved quantity is

SII = �L 2 − 2 q
F

r
Lz − 2F

z

r

(
H − q2v0

)
+ q2 F 2

(
x2 + y2

)
r4

.

3. A second dipolar breaking of Taub–NUT with

V = v0 +
m

r
+ Ez.

The conserved quantity is

SIII = (�p ∧ �L)z − q
(m

r
− E z

)
Lz − 2U

(
H − q2v0

) − 2q2 mE

(
x2 + y2

)
r

.

In the limiting case of Taub–NUT, we have in fact 3 extra Killing vectors, which are holo-
morphic. It follows that we will have 3 Killing–Stäckel tensors, giving rise to the generalized
Runge–Lenz vector

�S = �p ∧ �J + m
(
q2v0 − H

) �r

r
, �J = �L + q

m

r
�r,

discovered by Gibbons and Manton [1]. The conserved quantity SIII does reduce to Sz in the
limit E → 0.

All of these metrics have at least the 4 conserved quantities

q = Π0, H, LµΠµ, S,

which are easily checked to be in involution, thus establishing the Liouville integrability of their
corresponding geodesic flows.

Let us consider the class of metrics with an extra tri-holomorphic Killing.

4 One extra tri-holomorphic Killing

Here we can take the Killing vector to be L̂ = ∂z and since the potential does depend only on
the coordinates x and y we will state the results using the complex coordinate z = x + iy. Then
the metrics with the following potentials will exhibit a quadratic Killing–Stäckel tensor:
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1. First case:

V = v0 + m
z√

z2 + c2
+ c.c.,

where c.c. means complex conjugation. The conserved quantity is

S1 = L2
z − c2 Π2

x − 2c2F Π0 Πz + c2(2v0U + D)Π2
0 − 2c2UH, c �= 0,

with

U + iF = −m
z + z√
z2 + c2

, D = −2|m|2
(
z2 + z2 + |z|2 + c2

)
|√z2 + c2|2 .

The Bianchi VII0 and Bianchi VI0, which appear as particular cases of these metrics for v0 = 0
were already known to be integrable from [6].

2. Second case:

V = v0 +
m

2z2
+ c.c., m ∈ C,

with the conserved quantity

S2 = L2
z − 2F Π0 Πz + 2v0U Π2

0 − 2UH, U + iF = m
z

z
.

3. Third case:

V = v0 +
m√
z

+ c.c., m ∈ C,

with the conserved quantity

S3 = Πy Lz − 2F Π0 Πz + (2v0U + D)Π2
0 − 2UH,

and

U + iF = −m

2
z − z√

z
, D = |m|2 z + z

|√z|2 .

4. The fourth case:

V = v0 + m(z + z)/2, m ∈ R,

is super-integrable, with two conserved quantities

S(1)
4 = Π2

y + (Πz − my Π0)2, S(2)
4 = Πx Πy − V Π0(Πz − my Π0) − my H.

The parameter v0 is always real.
Here too, all of these metrics have at least the 4 conserved quantities

q = Π0, H, LµΠµ, S,

which are easily checked to be in involution, thus establishing the Liouville integrability of their
corresponding geodesic flows.
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