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Travelling-wave solutions of the Degasperis–Procesi equation (DPE) are investigated. The
solutions are characterized by two parameters. Hump-like, loop-like and coshoidal periodic-
wave solutions are found; hump-like, loop-like and peakon solitary-wave solutions are ob-
tained as well. Hone and Wang showed a connection between the DPE and the Vakhnenko
equation (VE). Comparing the solutions of the DPE and the VE, we observe that, for both
equations at interaction of waves, there are three kinds of phaseshift that depend on the
ratio of wave amplitudes. In particular, there is a case when two interacted waves have
phaseshifts in the positive direction.

1 Introduction

This report deals with the Degasperis–Procesi equation (DPE) [1–3]

ut − utxx + 4uux = 3uxuxx + uuxxx (1)

which is contained in the family of equations [1]

ut − utxx + (b + 1)uux = buxuxx + uuxxx, (2)

(parameter b is constant). When b = 2, equation (2) reduces to the well-known Cammasa–Holm
equation (CH) [4, 5]

ut − utxx + 3uux = 2uxuxx + uuxxx. (3)

Mikhailov and Novikov developed a powerful extension of the symmetry classification method [6],
and applying this to the equation (2) they found that only the cases b = 2, 3 could possess in-
finitely many commuting symmetries, and so only these two cases are integrable. In a recent
paper Degasperis, Holm and Hone [2] constructed a Lax pair of the equation (1), and hence
proved the integrability of the Degasperis–Procesi equation. Unfortunately, there are no so-
lutions of the direct problem and the inverse problem of the spectral equation from this Lax
pair.

Hone and Wang [7] have shown the connection of the DPE (1) with the integrable Vakhnenko
equation (VE) [8–10]

(ut + uux)x + u = 0. (4)

Indeed, the transformation x → εx − t/3ε, t → εt, u → u − 1/3ε2 reduces the DPE to the VE
when ε → 0

[(ut + uux)x + u]x = ε2(ut + 4uux). (5)
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Figure 1. The polynomial f(z). The interval of integration is between the roots z2 and z3.

Recently, we have investigated equation (4) by direct integration [8,9], by Hirota’s method [11]
as well as by the inverse scattering transform method [10]. In the context of this paper, it is
of interest that the VE has two families of travelling-wave solutions (see Figs. 1, 2 in [8]); in
particular, there is a soliton solution in loop-like form.

Comparing the properties of the solutions of the DPE (1) and the VE (4), we observe that
for both equations under interaction of waves, there are three kinds of phaseshift that depend
on the ratio of wave amplitudes [2, 12, 13]. In particular, there is a case when two interacted
waves have phaseshifts in the positive direction.

However, it engages our attention that soliton solutions have not been observed for the DPE
recently. If the VE has a loop-like solution, it follows that the DPE should admit a loop-like
solution. In this paper we investigate the travelling-wave solutions of the DPE. The solutions
are characterized by two parameters. Hump-like, loop-like and coshoidal periodic-wave solutions
are found; hump-like, loop-like and peakon solitary-wave solutions are obtained as well.

2 Travelling-wave solutions

We consider the DPE (1). Restricting our attention to travelling waves, we introduce new
variables

z = (u − v)/|v|, η = x − vt − x0, τ = |v|t, (6)

where v and x0 are arbitrary constants with v �= 0. In this case the initial equation is reduced
to the ODE

(zzη)ηη = (4z + 3c)zη with c := v/|v| = ±1. (7)

After two integrations we have

(zzη)2 = f(z) (8)

with

f(z) = z4 + 2cz3 + Az2 + B = (z − z1)(z − z2)(z − z3)(z − z4),

where f(z) is a polynomial of fourth order and is shown in Fig. 1.
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Figure 2. Four possible cases for the polynomial f(z).

Analyzing equation (8), we observe that the roots of the polynomial f(z) are real and the
interval of integration is between the roots z2 and z3. We can write two forms of solution. The
first form of solution is

z =
z2 − z1 sn2(w|m)
1 − n sn2(w|m)

with n =
z3 − z2

z3 − z1
, (9)

where

w = pζ, p = 1
2

√
(z4 − z2)(z3 − z1), m =

(z3 − z2)(z4 − z1)
(z4 − z2)(z3 − z1)

and

η = [wz1 + (z2 − z1)Π(n; w|m)]/p. (10)

Here sn(w|m) is a Jacobian elliptic function and Π(n; w|m) is the elliptic integral of the third
kind. The second form of solution is

z =
z3 − z4 sn2(w|m)
1 − n sn2(w|m)

with n =
z3 − z2

z4 − z2
(11)

and

η = [wz4 + (z4 − z3)Π(n; w|m)]/p. (12)

Hence the solution is given in parametric form with w as a parameter. The solutions are
characterized by the two parameters A and B, or equivalently A and m.

3 Classification of solutions

The equation (7) is invariant under the transformation z → −z, c → −c; this corresponds to the
transformation u → −u, v → −v. Hence we need to consider only the case c = 1 (i.e. v > 0).

Four cases are possible for the polynomial f(z) corresponding to different ranges of values
of A (see Fig. 2). Examples of the corresponding solutions are illustrated in Fig. 3. In the first
column are periodic solutions with m �= 1. In the second column are the corresponding limiting
cases with m = 1. These are solitary wave solutions, except for the figure in the second line
which is a periodic peakon solution.

4 Conclusion

Travelling-wave solutions of the Degasperis–Procesi equation are investigated. The solutions are
characterized by two parameters. Hump-like, loop-like and coshoidal periodic-wave solutions
are found; hump-like, loop-like and peakon solitary-wave solutions are obtained as well.
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Figure 3. Travelling-wave solutions.
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