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We study an extension of integrable equations which possess the Lax representations to
noncommutative spaces. We construct various noncommutative Lax equations by Lax-
pair generating technique and Sato theory. Sato theory has revealed essential aspects of
the integrability of commutative soliton equations and the noncommutative extension is
worth studying. We succeed in deriving various noncommutative hierarchy equations in the
framework of Sato theory, which is brand-new. The existence of the hierarchy would suggest
a hidden infinite-dimensional symmetry in the noncommutative Lax equations. We finally
show that a noncommutative version of Burgers equation is completely integrable because
it is linearizable via noncommutative Cole–Hopf transformation. These results are expected
to lead to the completion of noncommutative Sato theory.

1 Introduction

The extension of ordinary integrable systems to noncommutative (NC) spaces is one of hot topics
in the recent study of integrable systems [1–26]. NC extension in gauge theories corresponds
to the presence of background magnetic fields and leads to the discovery of many new physical
objects and successful applications to string theories [27]. In particular, NC (anti-)self-dual
Yang–Mills (YM) equations are integrable and important [28].

On the other hand, many typical integrable equations such as the Korteweg–de Vries (KdV)
equation contain no gauge field and the NC extension of them perhaps might have no physical
picture. NC extension of (1 + 1)-dimensional nonlinear equations introduces infinite number
of time derivatives and it becomes very hard to define the integrability. Nevertheless, some of
them actually possess integrable properties, such as the existence of infinite number of conserved
quantities [3, 14]. Furthermore, a few of them can be derived from NC (anti-)self-dual YM
equations by suitable reductions [8, 24]. This fact may give some physical meanings and good
properties to the lower-dimensional NC field equations. Now it is time to study in detail whether
they are actually integrable or not.

In this article, we present various NC equations which possess the Lax representations. We
mainly discuss the Lax-pair generating technique and applications of Sato theory. Sato theory
is one of the most beautiful soliton theories and reveals various integrable aspects of soliton
equations, such as the existence of multi-soliton solutions, the structure of the solution space
and the hidden symmetry of them. Hence NC extension of Sato theory is worth studying and
the present discussions on it are all new. Here we prove the existence of various NC hierarchy
equations, which would suggest hidden infinite-dimensional symmetries of NC equations. Finally
we discuss the integrability of NC (1 + 1)-dimensional Burgers equation and prove that it is
completely integrable due to the linearizability.

1Talk given by K.T. at the Fifth International Conference on Symmetry in Nonlinear Mathematical Physics,
Kyiv, Ukraine, June 23–29, 2003.
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2 Noncommutative field equations

NC spaces are defined by the noncommutativity of the coordinates: [xi, xj ] = iθij , where θij

are real constants and are called the NC parameters. NC field theories can be defined by
replacement of ordinary products of fields in the commutative theories with the star-product.
The star-product is defined for ordinary fields on commutative spaces and explicitly given by

f � g(x) := exp
(
i

2
θij∂

(x′)
i ∂

(x′′)
j

)
f(x′)g(x′′)

∣∣∣
x′=x′′=x

, (1)

where ∂(x′)
i := ∂/∂x′i and so on. The star-product has associativity: f � (g � h) = (f � g) � h

and returns to the ordinary product in the commutative limit: θij → 0. The modification
of the product makes the ordinary spatial coordinate “noncommutative”, that is, [xi, xj ]� :=
xi � xj − xj � xi = iθij .

We note that the fields themselves take c-number values as usual and the differentiation and
the integration for them are well-defined as usual. A nontrivial point is that NC field equations
contain infinite number of derivatives in the nonlinear terms. Hence the integrability of the
equations is not so trivial as in commutative cases. For detailed discussion on it, see [24].

3 Noncommutative Lax equations

A given NC differential equation is said to have the Lax representation if there exists a suitable
pair of operators (L,B) so that the following equation:

[∂t −B,L]� = 0, (2)

is equivalent to the given NC differential equation. Here the star-product does not affect the
derivative operator, for example, ∂t�∂x = ∂t∂x. The pair of operators (L,B) and the equation (2)
are called the Lax pair and the NC Lax equation, respectively.

On NC spaces, the meaning of Lax representations would be vague [24]. However, they
actually have close connections with the bi-complex method [2] which leads to infinite number
of conserved quantities, and the (anti)-self-dual YM equation which is integrable in the context
of twistor descriptions and ADHM constructions [28].

Now let us construct NC Lax equations by the Lax-pair generating technique. The technique
is a method to find a corresponding B-operator for a given L-operator and based on the following
ansatz for the B-operator:

B = ∂n
i L

m +B′. (3)

Then the problem reduces to that for the B′-operator which is determined by hand so that the
Lax equation should be a differential equation without bare differential ∂i.

In order to explain the steps, for example, let us consider the KdV equation on NC (1 + 1)-
dimensional space-time where the coordinate and the noncommutativity are denoted by (x, t)
and [t, x] = iθ, respectively.

NC KdV equation [3, 8, 17, 21]. The L-operator for KdV equation is given by LKdV =
∂2

x + u(x, t). The ansatz for the operator B is of the following type:

BKdV = ∂xLKdV +B′ = ∂3
x + u∂x + ux +B′, (4)

where ux := ∂u/∂x. The Lax equation (2) leads to the equation for the unknown operator B′:

[∂2
x + u,B′] = ux∂

2
x + ux � u− ut. (5)
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Here the bare derivative term ux∂
2
x is troublesome. In order to eliminate it, let us take the

following ansatz for B′: B′ = X∂x + Y , where X and Y are polynomial of u, ux, ut, uxx :=
∂2u/∂x2 etc. The Lax equation (2) reduces to

(2X − u)x∂
2
x + (Xxx + [u,X] + 2Yx)∂x + (Yxx + [u, Y ] −X � ux + ut − ux � u) = 0. (6)

The condition that the coefficients of ∂2
x and ∂x should vanish yields differential equations for X

and Y , which are easily solved by X = 1
2u, Y = −1

4ux. Now the Lax equation (2) becomes
a differential equation, that is, the NC KdV equation:

ut =
1
4
uxxx +

3
4
(u � u)x, (7)

where (u�u)x := ux �u+u�ux. The nonlinear term becomes symmetric and the equation shows
just a conservation law. In the star-product formalism, the spatial integration is well-defined.
Hence the spatial integrations of current densities are conserved quantities as in commutative
cases [24]. Here Q :=

∫
dxu is conserved, that is, ∂tQ = 0.

In this way, we can generate a wide class of Lax equations on NC (2+1) and (1+1)-dimensional
space-times. In particular, this method is suitable for higher-dimensional extension both on com-
mutative spaces [29] and NC spaces [17]. Here we present some results of (2+1)-dimensional NC
Lax equations where the coordinate is denoted by (x, y, t). The noncommutativity is basically
introduced in space-space directions: [x, y] = iθ. For more discussions and examples, see [17,21].

NC Kadomtsev–Petviashvili (KP) equation [11,17,21]

ut =
1
4
uxxx +

3
4
(u � u)x +

3
4
∂−1

x uyy +
3
4
[
u, ∂−1

x uy

]
�
, (8)

where ∂−1
x f(x) :=

∫ x
dx′f(x′). The Lax pair is given by

LKP = ∂2
x + u(x, y, t) + ∂y =: L′

KP + ∂y,

BKP = ∂xL
′
KP +X∂x + Y = ∂3

x +
3
2
u∂x +

3
4
ux − 3

4
∂−1

x uy. (9)

There is seen to be a nontrivial deformed term [u, ∂−1
x uy]� in the equation (8), which vanishes

in the commutative limit.
NC Bogoyavlenski–Calogero–Schiff (BCS) equation [17,21]

ut =
1
4
uxxy +

1
2
(u � u)y +

1
4
ux � (∂−1

x uy) +
1
4
(∂−1

x uy) � ux +
1
4
[u, ∂−1

x [u, ∂−1
x uy]�]�, (10)

whose Lax pair and the ansatz are

LBCS = ∂2
x + u(x, y, t),

BBCS = ∂yLBCS +X∂x + Y = ∂2
x∂y + u∂y +

1
2
(∂−1

x uy)∂x +
3
4
uy − 1

4
∂−1

x [u, ∂−1
x uy]�. (11)

This time, a nontrivial term is found even in the B-operator. In commutative limit, this coincides
with the BCS equation which has multi-soliton solutions [30].

4 Noncommutative hierarchy equations and Sato theory

In this section, we derive various noncommutative hierarchy equations in the framework of Sato
theory [31] introducing the pseudo-differential operator.

Let us introduce the following Lax operator as a (first-order) pseudo-differential operator:

L = ∂x + u2∂
−1
x + u3∂

−2
x + u4∂

−3
x + · · · , uk = uk(t1, t2, t3, . . .). (12)
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The action of the operator ∂n
x on a multiplicity operator f is given by

∂n
x · f :=

∑
i≥0

(
n
i

)
(∂i

xf)∂n−i :=
∑
i≥0

n(n− 1) · · · (n− i+ 1)
i(i− 1) · · · 1 (∂i

xf)∂n−i. (13)

We note that the definition can be extended to negative n. The examples are,

∂−1
x · f = f∂−1

x − fx∂
−2
x + fxx∂

−3
x − · · · ,

∂−2
x · f = f∂−2

x − 2fx∂
−3
x + 3fxx∂

−4
x − · · · ,

∂−3
x · f = f∂−3

x − 3fx∂
−4
x + 6fxx∂

−5
x − · · · ,

where ∂−1
x in the RHS acts as an integration operator

∫ x
dx. Products of pseudo-differential

operators are also well-defined and the total set of pseudo-differential operators forms an operator
algebra. For more on pseudo-differential operators and Sato theory, see e.g. [32].

The Lax representation for a hierarchy in Sato’s framework is defined as

[∂tm −Bm, L]� = 0, m = 1, 2, . . . , (14)

where Bm is given here by

Bm := (L � · · · � L︸ ︷︷ ︸
m times

)≥0 =: (Lm)�≥0. (15)

The suffix “≥ 0” represents the positive and 0-th power part of Lm. The examples are

B1 = ∂x, B2 = ∂2
x + 2u2, B3 = ∂3

x + 3u2∂x + 3(u3 + u2x), . . . . (16)

The noncommutativity is introduced for infinite number of “time variables” (t1, t2, . . .). As
it can be taken arbitrarily, we do not fix the noncommutativity here.

NC KP hierarchy. The hierarchy (14) gives rise to NC KP hierarchy which contains the
NC KP equation (8). The coefficients of each powers of (pseudo-)differential operators yield
infinite series of NC “evolution equations”, that is, for m = 1

∂1−k
x ) ukt1 = ukx, k = 2, 3, . . . ⇒ t1 ≡ x, (17)

for m = 2

∂−1
x ) u2t2 = u2xx + 2u3x,

∂−2
x ) u3t2 = u3xx + 2u4x + 2u2 � u2x + 2[u2, u3]�,

∂−3
x ) u4t2 = u4xx + 2u5x + 4u3 � u2x − 2u2 � u2xx + 2[u2, u4]�, . . . (18)

and for m = 3

∂−1
x ) u2t3 = u2xxx + 3u3xx + 3u4x + 3u2x � u2 + 3u2 � u2x,

∂−2
x ) u3t3 = 3u4xx + 6u2 � u3x + 3u2x � u3 + 3u3 � u2x + 3[u2, u4]�, . . . . (19)

These just imply the NC KP equation (8) with 2u2 ≡ u, t2 ≡ y, t3 ≡ t. Important point is that
infinite kind of fields u3, u4, u5, . . . are represented in terms of one kind of field 2u2 ≡ u as is seen
in equation (18). This guarantees the existence of NC KP hierarchy and the infinite differential
equations are called the NC (KP) hierarchy equations.

Putting the constraint Ll = Bl on the NC KP hierarchy (14), we get infinite set of NC
hierarchies. Then the following NC hierarchy:[

∂tm −Bm, L
l
]
�

= 0, (20)
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becomes a NC differential equation. We can easily show

∂u

∂tNl
= 0, N = 1, 2, . . . (21)

because of BNl = LNl. The reduced NC hierarchy is called the l-reduction of NC KP hierarchy.
NC KdV hierarchy (2-reduction of NC KP). Taking the constraint L2 = B2, we get

the KdV hierarchy. The Lax equation:

∂u

∂tm
=

[
Bm, L

2
]
�
, (22)

gives rise to the m-th KdV hierarchy equation which becomes, for example, the (third) NC KdV
equation (7) with t3 ≡ t and the 5-th NC KdV equation [17]:

ut5 =
1
16
uxxxxx +

5
16

(u � uxxx + uxxx � u) +
5
8
(ux � ux + u � u � u)x. (23)

In Lax-pair generating technique, the Bm-operator is given by the ansatz Bm = ∂m−2
x LKdV +B′.

NC Boussinesq hierarchy (3-reduction of NC KP). The 3-reduction L3 = B3 yields
the NC Boussinesq hierarchy. The Lax equation:

∂u

∂tm
=

[
Bm, L

3
]
�
, (24)

leads to the m-th Boussinesq hierarchy equation which is, for m = 3, the NC Boussinesq equa-
tion [17]:

utt =
1
3
uxxxx + (u � u)xx + ([u, ∂−1

x ut]�)x. (25)

In this way, we can generate infinite set of the l-reduced NC hierarchies. Furthermore, if
we take other set-up for the definition of pseudo-differential operator L and “time-evolution”
operator Bm, we can get many other hierarchies as follows.

NC modified KdV (mKdV) hierarchy. If we take

L = ∂x + u1 + u2∂
−1
x + u3∂

−2
x + · · · , Bm = (Lm)�≥1, (26)

and put the constraint L2 = B2, infinite kind of fields u2, u3, . . . are represented in terms of one
kind of field 2u1 ≡ v. We can easily see ∂t2N v = 0. The set of Lax equations:[

Bm − ∂tm , L
2
]
�

= 0 (27)

yields NC mKdV hierarchy which implies the NC mKdV equation for m = 3 with t3 ≡ t:

∂v

∂t
=

1
4
vxxx − 3

8
v � vx � v +

3
8
[v, vxx]�. (28)

We note that the NC mKdV equation (28) is different from that in [3] from NC KdV equa-
tion (7) via NC Miura map u = −v � v − vx. The NC mKdV hierarchy can be considered as
the 2-reduction of NC mKP hierarchy. However the existence of the NC mKP hierarchy seems
to be nontrivial because it cannot be represented in terms of one kind of field. (The NC mKP
equation given in early versions of [21] is incorrect.) For the same reason, the higher reduction
of the NC mKP hierarchy seems to be hard to obtain.

NC Burgers hierarchy [24]. If we take

L = ∂x + u1 + u2∂
−1
x + u3∂

−2
x + · · · , Bm = (Lm)�≥1, (29)
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and put the constraint L = B1 =: ∂x + v, the hierarchy:

∂tmv = [Bm, L]� (30)

yields the NC Burgers hierarchy which implies the NC Burgers equation:

∂v

∂t2
= [B2, L]� =

[
∂2

x + 2v∂x, ∂x + v
]
�

= vxx + 2v � vx. (31)

and the third-order NC Burgers equation:

∂v

∂t3
= [B3, L]� = vxxx + 3v � vxx + 3vx � vx + 3v � v � vx (32)

and so on. The nonlinear terms are not symmetric, which will be proved to be a key point in
the linearization in the next section. The Bm-operator is given in Lax-pair generating technique
by Bm = ∂m−1

x L + B′. This time, the generated equations contain some parameters and thus
covers wider class of Lax equations [24].

5 Integrability of noncommutative Burgers equation

In this section, we discuss the integrability of the Burgers equation (31) on NC (1+1)-dimensional
space-time where the coordinate and the noncommutativity are denoted by (x, t) ≡ (t1, t2) and
[t, x] = iθ, respectively.

In commutative case, it is well known that the Burgers equation is linearized by the Cole–Hopf
transformation. The discussion can be extended to noncommutative case [24, 25]. NC Burgers
equation (31) can be linearized by the following noncommutative analogue of the Cole–Hopf
transformation: v = ψ−1 � ψx. The linearized equation is a (NC) diffusion equation: ψt = ψxx.
The naive solution of the above NC diffusion equation is

ψ(t, x) = 1 +
N∑

i=1

hie
k2

i t � e±kix = 1 +
N∑

i=1

hie
i
2
k3

i θek
2
i t±kix, (33)

where hi, ki are complex constants. In the commutative limit, this reduces to the N -shock
wave solution in fluid dynamics. The final form in (33) shows that the N -shock wave solution
is deformed by e

i
2
k3

i θ due to the noncommutativity. The explicit representation in terms of v is
hard to obtain because the derivation of ψ−1 in the NC Cole–Hopf transformation is nontrivial.
However we can discuss the asymptotic behaviors at t→ ±∞ and actually see the effect of the
NC deformation. In fact, the exact solutions for N = 1, 2 are obtained in [25] and nontrivial
effects of the NC-deformation are reported. We note that NC one shock-wave solutions can
always reduce to the commutative ones because f(t− x) � g(t− x) = f(t− x)g(t− x) [24].

The results show that the NC Burgers equation (31) is completely integrable even though
the NC Burgers equation contains infinite number of time-derivatives in the nonlinear term.
The linearized equation is a differential equation of first order with respect to time and the
initial value problem is well-defined. This is a surprising result. The (NC) diffusion equation
can be solved for arbitrarily boundary conditions by the Fourier transformation. Furthermore,
we note that the form of the nonlinear term in the NC Burgers equation (31) is crucial for the
linearization. If it becomes symmetric like the NC KdV equation (7), the linearization is proved
to be impossible [24].
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6 Conclusion and discussion

In this article, we presented various NC Lax equations and proved the existence of many NC
hierarchies. The NC extension of Sato theory is new. We also confirmed that NC Burgers
equation is linearizable and completely integrable even though it is a differential equation of
infinite order with respect to time. The linearized equation is a (NC) diffusion equation and can
be solved in usual ways.

NC extension of Ward conjecture [33] would be very interesting [21] though we have omitted
it in this article because of limitations of space. Some NC equations are actually derived from
NC (anti-)self-dual YM equations by reduction [8, 24] and embedded [9, 12, 34] in N = 2 string
theory [35]. This guarantees that NC integrable equations would have a physical meaning and
might be helpful to understand new aspects of the corresponding string theory.

The next step is NC extension of Hirota’s bilinearization [36]. This could be realized as
a simple generalization of the Cole–Hope transformation whose extension to NC spaces are
already successful as shown in Section 5. Hirota’s bilinearization leads to the theory of tau-
functions. Sato theory is based on the existence of hierarchies and tau-functions. We have just
revealed the existence of hierarchies and the completion of NC Sato theory would be drawing
near at hand.

Acknowledgements

We would like to thank M. Kato, I. Kishimoto, A. Nakamula and T. Tsuchida for discussion.
The work of M.H. was supported in part by JSPS Research Fellowships for Young Scientists
(#15-10363). That of K.T. was financially supported by Grant-in-Aid for Scientific Research
(#15740242).

[1] Curtright T., Fairlie D. and Zachos C.K., Integrable symplectic trilinear interaction terms for matrix mem-
branes, Phys. Lett. B, 1997, V.405, 37–44; Zachos C.K., Fairlie D. and Curtright T., Matrix membranes and
integrability, hep-th/9709042.

[2] Dimakis A. and Müller-Hoissen F., Bicomplexes, integrable models, and noncommutative geometry, Int. J.
Mod. Phys. B, 2000, V.14, 2455–2460; A noncommutative version of the nonlinear Schroedinger equation,
hep-th/0007015; Bicomplex formulation and Moyal deformation of (2+1)-dimensional Fordy–Kulish systems,
J. Phys. A, 2001, V.34, 2571–2581; Bicomplexes and Bäcklund transformations, J. Phys. A, 2001, V.34,
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