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In the report the possibility of dynamic symmetries to an analytical integration of au-
tonomous ODE of second order is presented. The correlation with known results is pointed
out. The concept of a defining system of dynamic symmetries is given. The example indi-
cating to the effectiveness of an offered method is produced.

1 Introduction

The concept of dynamic symmetry is given, for example, in [1]. The differential equation, in
this case, is replaced by ODE system of the first order:

y′′ = f(x, y, y′) ⇔ dy

dx
= z,

dz

dx
= f(x, y, z). (1)

Then it is possible to consider the question of an infinitesimal transformation

X = ξ(x, y, z)
∂

∂x
+ η(x, y, z)

∂

∂y
+ µ(x, y, z)

∂

∂z
, (2)

translating a solution of system (1) again into a solution. That is operator (2) should satisfy
the condition

[X, A] = λ(x, y, z)A, (3)

where

A =
∂

∂x
+ z

∂

∂y
+ f(x, y, z)

∂

∂z
.

As against the contact symmetries, set by the characteristic function Ω(x, y, z)

X = Ωz
∂

∂x
+ (z Ωz − Ω)

∂

∂y
− (Ωx + z Ωy)

∂

∂z
,

of the operator of dynamic symmetry (2), the components ξ, η, µ are defined only by condi-
tion (3).

2 Dynamical symmetries of autonomous differential
second order equations

Let us consider the autonomous differential equation of the second order

y′′ = f(y, y′). (4)
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The equation (4) admits point symmetry X1 = ∂
∂x and dynamic symmetry X2. Following the

scheme of S. Lie, we shall write out the most general transformations retaining autonomy (4).
For this purpose it is necessary that the transformed system should suppose symmetry X̄1 = ∂

∂t .
Thus two cases are possible:

I uncrossed transformation II crossed transformation

X1 ⇔ X̄1

X2 ⇔ X̄2

X1 X̄1

↖↗
↙↘

X2 X̄2

In case of I transformations have the form

x = t + α(u, w), y = β(u, w), z = γ(u, w). (5)

In case of II transformations will be defined by a choice of the form of the transformed dynamic
system. By taking dynamic system

du

dt
= R(w)u + P (w),

dw

dt
= Q(w), (6)

it is possible to speak about linearizing of the equation (4) according to the circuit I or II. In
case of I the class of linearizing equations is most clearly defined

y′′ =

∣∣∣∣∣∣∣∣
d2β

dt2
dβ

dt

d2(t + α)
dt2

d(t + α)
dt

∣∣∣∣∣∣∣∣
/(

d (t + α)
dt

)3

. (7)

The general solution of the equation (7) has the form:

x =
∫

dw

Q(w)
+ α(u, w) + C1, y = β(u, w),

u = e
∫ R(w)

Q(w)
dw

(∫
P (w)
Q(w)

e
− ∫ R(w)

Q(w)
dw

dw + C2

)
. (8)

Before consideration of type II transformation we shall present additional information concerning
dynamic symmetries. In the book [1] it is pointed out that if the symmetry X of dynamic system
of the equations determined by the operator A is known, then

X̂ = X + ρ(x, y, z)A (9)

with any function ρ(x, y, z), is also a dynamic symmetry. That is explained by the fact that the
following

[X̂, A] = λA − (Aρ)A = λ̂A

takes place. Using ratio (9) it is always possible to proceed from the operator X to the operator X̂
at which the coefficient at ∂

∂x will be equal to zero. In the case of point symmetry

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
+ · · · (10)

and a differential equation of the second order y′′ = f(x, y, y′) we shall obtain

X̂ = (η − y′ξ)
∂

∂y
+ · · · . (11)
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In the book [2] the proof by Boyer (1967) that the operators (10), (11) are equivalent is presented.
By repeating Boyer’s reasonings it is easy to show that in case of dynamic system

dy

dx
= ϕ(x, y, z),

dz

dx
= f(x, y, z), A =

∂

∂x
+ ϕ(x, y, z)

∂

∂y
+ f(x, y, z)

∂

∂z
,

generators

X = ξ(x, y, z)
∂

∂x
+ η(x, y, z)

∂

∂y
+ µ(x, y, z)

∂

∂z
and X̂ = (η − ϕξ)

∂

∂y
+ (µ − fξ)

∂

∂z

are equivalent. Let us consider now linearization of the second type. By taking as new variables
the first integrals of the system (6)

s = ue
− ∫ R(w)

Q(w)
dw −

∫
P (w)
Q(w)

e
− ∫ R(w)

Q(w)
dw

dw, v =
∫

dw

Q(w)
− t,

we shall obtain the following system

ds

dt
= 0,

dv

dt
= 0. (12)

The system (12) has the dynamic symmetry

X = ξ(t, s, v)
∂

∂t
+ η(s, v)

∂

∂s
+ µ(s, v)

∂

∂v

with any functions ξ(t, s, v), η(s, v), µ(s, v). Going back to variables t, u, w we shall obtain the
dynamic symmetry of system (6)

X = (ξ + µ)
∂

∂t
+

[
(ξ + µ)(R(w)u + P (w)) + ηe

∫ R(w)
Q(w)

dw
]

∂

∂u
+ (ξ + µ)Q(w)

∂

∂w
.

Going from the found symmetry to the equivalent operator, we obtain dynamic symmetry in
the following form

X̂ = ηe
∫ R(w)

Q(w)
dw ∂

∂u
. (13)

The most general transformation reducing the generator (13) to ∂
∂x has the form

x = α(s, v) + Φ(t, w), y = Ψ(t, w), z = Ω(t, w), (14)

where αs = 1
η(s,v) . The transformation (14) allows to proceed from system (6) to system

dy

dx
=

(
d

dt
Ψ(t, w)

)/(
d

dt
Φ(t, w)

)
,

dz

dx
=

(
d

dt
Ω(t, w)

)/(
d

dt
Φ(t, w)

)
. (15)

To bring system (15) into correspondence with equation (4) it is necessary to put

z = Ω(t, w) =
(

dΨ
dt

)/(
dΦ
dt

)
. (16)

Thus we obtain the second class of linearizing autonomous ODE of the second order as

y′′ =

∣∣∣∣∣∣∣∣
d2Ψ
dt2

dΨ
dt

d2Φ
dt2

dΦ
dt

∣∣∣∣∣∣∣∣
/(

dΦ
dt

)3

. (17)
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The general solution of the equation (17) looks as follows:

x = C1 + Φ(t, w), y = Ψ(t, w), t = C2 +
∫

dw

Q(w)
. (18)

Comparing the general solutions (8), (18) it is easy to notice that they will coincide if in (8)
functions α, β are considered as depending on arguments s, w: α = α(s, w), β = β(s, w), and
in (18) functions Φ, Ψ depending on arguments v, w: Φ = Φ(v, w), Ψ = Ψ(v, w). It makes
possible to speak not about two classes of autonomous ODE of the second order but about one.
Of three functions Ω, Ψ, Φ only two are independent, the third function is determined from
a condition (16). By taking as arguments variables t, v it is easy to obtain well known results.
With the help of functions Ω(t, v), Ψ(t, v) the autonomous differential equation of the second
order is determined as

Ω
dΩ
dt

=
dΨ
dt

f(Ψ, Ω). (19)

In spite of the fact that at transition from the equation (4) to the equation (19) there was
a reduction of the order, it does not always facilitate a task of integration of the differential
equations.

The group approach with the help of criterion (3) allows to receive additional equations of the
second order with respect to required functions Ω, Ψ, Φ. In the coordinate form the criterion (3)
is equivalent to the system of two equations of the form:

µ − ηx − zηy − fηz + zξx + z2ξy + zfξz = 0,

ηfy + µfz − µx − zµy − fµz + fξx + zfξy + f2ξz = 0. (20)

The transformation (14) allows to write out the type of dynamic symmetries in variables x, y, z:

X = (Φt − αv)
∂

∂x
+ Ψt

∂

∂y
+ Ωt

∂

∂z
.

Replacing in the adduced out system variables y, z with the help of the formulas (14), and adding
the equations

Ψt + ΨwQ − (Φt + ΦwQ)Ω = 0, Ωt + ΩwQ − (Φt + ΦwQ)f(Ψ, Ω) = 0, (21)

we can receive a system of four equations with three unknown functions. As against classical sys-
tem of the determining equations used while finding point symmetries, the constructed system of
the equations is not linear. However, it is easy to notice, that with the help of the equations (21)
equations with partial derivatives can be reduced to the ordinary differential equations of the
second order, in which one of variables plays a role of parameter. It makes possible to apply the
well elaborated algorithms of point symmetries to investigation of the constructed system of the
determining equations of dynamic symmetries.

3 Example

As a testing example underlining efficiency of the offered technique, we shall consider the equa-
tion of the second order having the form

y′′(A + By′) + y′3C + y′2D + y′E = 0 (22)

where

A = r3l
2k − r1k

3 − r3h
2k3 − r2k

3h − k2g1l,



264 M.I. Timoshin

B = 2r3kl − r2k
2 − 2r3hk2 − k2g1,

C = r2kky − r3kyl − r3kly + r3hyk
2 + 2r3hkky + g1kky,

D = r1k
2ky + 2r3hyk

2l + g1kkyl + r2kkyl + 2r3hkkyl + r2hk2ky + r3h
2k2ky

− g1k
3hy − r2k

2ly − 2r3hk2ly − r3l
2ky,

E = r1k
2kyl + r2k

2kyhl + r3l
2k2hy − g1k

3lhy + r3h
2k2kyl − r3h

2k3ly − r1k
3ly − r2k

3hly,

in which k, l, h are arbitrary functions of argument y, and r1, r2, r3, g1 are arbitrary constants.
Using the standard method of reduction to form (19), from the equation (22) we obtain the

Abel equation of the second type

dΩ
dy

(A + BΩ) + Ω2C + ΩD + E = 0. (23)

The equation (22) is linearized with the help of transformation

u =
k

z + l
− r3 + 1

g1
, w =

z

k
+ h. (24)

Thus we obtain equation(
r1 + r2w + r3w

2
) du

dw
= g1u + 1,

whose general solution looks as follows:

(u + 1/g1) − C2e
∫ g1dw

r1+r2w+r3w2 = 0. (25)

For representation of the general solution of the equation (22) as (8), it is necessary to define the
form of function α(u, w). Using ratio (5), and considering the function α on arguments (y, C2)
we obtain expression

α(y, C2) =
∫ (

1
z

+
kly − kyl − hyk

2

(kr2 − 2r3l + 2r3hk + kg1)z − l2r3 + k2r1 + lkg1 + r3h2k2 + k2hr2

)
dy.

In this case the integral is calculated with the assumption that variable z is function from y
determined by ratios (24), (25). Thus the general solution of equation (22) has the form

x = α(y, C2) +
∫

dw

r1 + r2w + r3w2
+ C1,

k

z + l
− r3

g1
+ C2e

∫ g1dw

r1+r2w+r3w2 = 0, w =
z

k
+ h.

Let us also note that last two equations give the general solution of Abel equation (23). It is
interesting to notice that in variable y, w(y) equation (23) takes the form

r1 + r2w + r3w
2

+
dw

dy

{
w

(
2r3k(l − kh) − k2(g1 + r2)

) − r1k
2 + r3(l − kh)2 + kg1(kh − l)

kyl − kly + hyk2

}
= 0,

and the standard transformation is brought to the canonic form:

dϑ

dτ
ϑ + ϑ +

3τ

16
−

3
2
3

(
2g2

1λ
4
3 − r3λ

1
3

)
24τ

1
3 r2

3λ
2
3

+
3

1
3

144τ
5
3 r2

3λ
2
3

= 0, (26)
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where

λ =
r3

g2
1 + 4r3r1 − r2

2

.

In directory [3] the transformation of equation of type (26) into another Abel equation and
then to Riccati equation is presented. The obtained equation was integrated by Koyalovich [4].
The author of the directory asserts that the form of the obtained solution is very bulky and
consequently it was not presented. In [3] solutions of special cases of the equation (26) through
Bessel’s functions are also given.

4 Concluding remark

In the conclusion we shall note that the proposed approach to investigation of integrated cases
of the autonomous differential equations of the second order can be considered as some analogue
of the Galois theory for polynomials. In investigating the solubility of the equation

Pn = xn + a1x
n−1 + a2x

n−2 + · · · + an−1x + an = 0,

the various ratios between roots of xi equation are considered, i.e. the equation is replaced with
a system of the equations for roots F1(xi1 , xi2 , . . . , xik) = 0, . . ., Fm(xi1 , xi2 , . . . , xir) = 0, which
can be solved easier than the initial equation.

In the proposed method the question of integration of differential equations is actually reduced
to investigation of the system of differential equations

Fi(x, y, z, xt, yt, zt, xw, yw, zw, xtw, ytw, ztw, xtt, ytt, ztt, xww, yww, zww) = 0,

where i = 1, 2, 3, 4. And while investigating the constructed system, the standard algorithms of
the group analysis can be used.
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