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The conventional Lie group approach is extended successfully to give out the group ex-
planation to the new conditional similarity reductions obtained by modifying the Clarkson
and Kruskal’s (CK’s) direct method for the (2+1)-dimensional Korteweg–de Vries (KdV)
equation.

1 Introduction

As is well-known that the classical Lie group approach, the nonclassical Lie group approach, the
Clarkson and Kruskal’s (CK’s) direct method are three powerful methods in finding similarity
reductions for a given nonlinear partial differential equation (NPDE) [1–6]. In many cases, the
similarity reductions obtained by the classical Lie group approach can also be yielded by the
CK’s direct method; and those obtained by the CK’s direct method while not by the classical
Lie group approach can be reobtained by the nonclassical Lie group approach. There have been
several modifications of these three methods in the literature [7–12].

Three years ago, we for the first time proposed the modified CK’s direct method to construct
the so-called conditional similarity reductions of the (2+1)-dimensional KdV equation in the
integrable case [9]. We call a reduction conditional similarity reduction since one reduction field
need to satisfy more than one reduction equation. Since then, similar work has been carried
out on several other NPDEs including the nonintegrable (2+1)-dimensional KdV equation [10],
the Jimbo–Miwa (JM) equation [11] and the Boussinesq equation [12]. It is noticed that the
conditional similarity reductions obtained by means of the modified CK’s direct method cannot
be recovered by utilizing the classical or even the nonclassical Lie group approach in their present
forms. The very reason lies in the fact that the constrained equation introduced in the present
nonclassical Lie group approach does not offer an additional conditional reduction equation for
the reduction field. Consequently, in order to reobtain the conditional similarity reductions by
using the classical Lie group approach or the nonclassical Lie group approach, a conditional
equation which will lead to the additional reduction equation must be introduced. In Ref. [13],
all the conditional similarity reductions of the JM equation resulting from the modified CK’s
direct method were retrieved by introducing a conditional equation, the KP equation, to form
an equation system and then applying the classical Lie group approach to the system. Thus,
the whole group theoretical explanation is given of the conditional similarity reductions for the
JM equation. In fact, how to introduce a conditional equation so that the conditional similarity
reductions got by the modified CK’s direct method can also be yielded by the classical Lie group
approach and/or the nonclassical Lie group approach has not yet been precisely known.

The aim of this paper is to report the recent progress on the Lie group approach which
gives out the group explanation of the conditional similarity reduction solutions obtained by the
modified CK’s direct method. The modified CK’s direct method and the conditional similarity
reduction solutions for the (2+1)-dimensional KdV equation will be reviewed in the next section.
In Section 3, the conventional Lie group approach is developed further to give out the full group
explanation for the conditional similarity reduction solutions given in Section 2. The last section
is a short summary and discussion.
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2 Conditional similarity reduction solutions

In the traditional CK’s direct method, in order to find the similarity solutions of a general Nth
order n-dimensional nonlinear system,

E0

(
x1, x2, . . . , xn, u, uxi , uxixj , . . . , ux

i1
1 x

i2
2 ···xin

n

)
≡ E0 = 0,

n∑
j=1

ij = N, (1)

one seeks solutions of the kind u = U(x1, x2, . . . , xn, P (ξ1, ξ2, . . . , ξn−1)), where ξj , j = 1, 2, . . .,
n − 1 are all functions with respect to {x1, x2, . . . , xn}. For some types of models, the solution
u may commonly be simplified to the linear ansatz

u = α + βP (ξ1, ξ2, . . . , ξn−1), (2)

where α and β are both functions of {x1, x2, . . . , xn}. In general, it is known that the ansatz (2)
may not be valid for other types of models, say, the Harry–Dym equation [3]. Substituting (2)
into equation (1) gives out

L∑
l=1

rl(α, αxi , β, βxi , ξxi , . . .)Fl(ξj , P, Pξj , . . .) ≡
L∑

l=1

rlFl = 0. (3)

Since the similarity reduction function P satisfies only one reduction equation, equation (3)
becomes an (n − 1)-dimensional PDE G(ξj , P, Pξj , . . .) ≡ G(P ) = 0, only for all the ratios of rl

being functions of {ξ1, ξ2, . . . , ξn−1}. Namely, rl = rkΓl should be satisfied for some fixed nonzero
rk, and Γl are functions of {ξ1, ξ2, . . . , ξn−1}.

In order to find the conditional similarity reductions of (1), we relax the condition that the
similarity reduction function P satisfies only one reduction equation as that P is allowed to
satisfy more than one reduction equation at the same time. Based on this idea, we make use of
the same reduction ansatz (2) and then separate the resulting equation (3) into m parts

m∑
k=1

M∑
l=1

AlkFl = 0, M ≥ L, (4)

with the condition
m∑

k=1

Alk = rl, (l ≤ L),
m∑

k=1

Alk = 0, (l > L), where Fl for l > L may be some

suitable functions of P and its partial differential derivatives with respect to {ξ1, ξ2, . . . , ξn−1}.
Then we can see that the reduction function P may satisfy m reduction equations

M∑
l=1

AlkFl = 0,

(k = 1, 2, . . . , m). When applying this modified direct method, one must make sure that all the
ratios of Alk are functions of {ξj} for the same k, while cannot be functions of {ξ1, ξ2, . . . , ξn−1}
for the different k. The reason is that if the ratio of any two Alk is a function of {ξ1, ξ2, . . . , ξn−1},
then they can be put into the same part of (4). The arbitrariness of m and the functions Fl

for l > L makes it a hard job to cover all the cases of the conditional similarity reductions.
Therefore, up to now, we have just considered the case m = 2 and Fl ≡ 0 for l > L. Obviously,
many more meaningful conditional similarity reductions may be found for m > 2 and/or for
Fl �= 0 when l > L.

Some types of the conditional similarity reductions of

uxt − uxxxy − 4uxuxy − 4uxxuy = 0, (5)

which is the potential form (v = ux) of the (2+1)-dimensional KdV equation

vt − vxxy − 4vvy − 4vx∂−1
x vy = 0.
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have been discussed in detail via the modified CK’s direct method in [9]. Here, we will list the
general known conditional similarity solution of (5) which reads

u =
ηt

4ηy
x +

1
4

∫ (
σtηy − σyηt

θηy
+ θ(ω14σ + Bσy) + γ14σηy

)
dy + θP, ξ = θx + σ,

where the function P = P (ξ, η) satisfies the conditional similarity reduction equations (i.e. (116)
and (117) of Ref. [9])

Pξξη + 4PξPη + γ14(ξPξ − P ) + γ29P + (γ21η + γ20)ξ + f1 = 0,

Pξξξ + 4P 2
ξ + ω14(ξPξ − P ) + BPξ + ω29P + (ω21η + ω20)ξ + f0 = 0,

with B = B(η), f1 = f1(η) and f0 = f0(η) being arbitrary functions of η. For the other functions
(θ = θ(t), σ = σ(y, t), η = η(y, t)) and constants (γ14, γ29, γ21, γ20, ω14, ω29, ω21, ω20), seven
possible selections were given in [9] which will be explicitly written down again in Table 1 later.

3 Group explanation of the conditional similarity
reduction solutions

In order to give out the whole group theoretical explanation of the conditional similarity reduc-
tions obtained via the modified CK’s direct method described in the last section, we have to
extend the present classical Lie group approach and the nonclassical Lie group approach.

Simply speaking, the extended classical and nonclassical conditional Lie group approaches
are realized if we introduce some constrained equations when solving the model equation and
then applying the standard group approach to the formed equation system. As a first attempt,
we worked on the JM equation [13] where the conditional similarity reductions yielded by the
modified CK’s direct method have been recovered totally. However, the constrained equation
in this case comes quite specifically so that it cannot be a good candidate for all the NPDEs in
observation. Consequently, a more systemic way should be established to find out a common
equation which can then be considered for a class of NPDEs. Starting from this standpoint,
a more general conditional equation for the integrable (2+1)-dimensional KdV equation is im-
ported when we try to give out the group explanation of the results [9] obtained via the modified
CK’s direct method, which read

uxxx + A1uxxy + A2uxuy + A3ux + A4uy + A5u
2
x + A6u + A7 = 0, (6)

with the coefficients Ai, (i = 1, 2, . . . , 7) being suitable functions with respect to the space-time
variables {x, y, t} to be determined later. Writing down the constrained equation (6) is based on
the fact that the orders of the differentiations and the nonlinearity of the conditional reductions
obtained by the modified CK’s direct method in [9] are not higher than those of the original
system (5). Like the conventional nonclassical Lie group approach, when using the extended
nonclassical Lie group approach, we have to utilize the following constraint condition

Xux + Y uy + Tut − U = 0, (7)

where X, Y , T , U of {x, y, t, u} are called the infinitesimals of the transformation functions
related to the infinitesimal transformations {x, y, t, u} → {x, y, t, u}+ ε{X, Y, T, U} with ε being
the group parameter, under which the model equation and the constrained equations should be
form invariant.

Ignoring the concrete calculations, we directly give out the whole group explanation in Tab-
le 1 where the first column is the selections corresponding to the known conditional similarity
solutions in Ref. [9], the second column is the solutions for the coefficients of the constrained
equation (6) and the last column is the concrete form of the related infinitesimal transformations.
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Table 1. Group explanation for the results obtained by the modified CK’s direct method.

Selections Parameters Infinitesimal Transformations

1 γ14 = c1, γ29 = c1 − 1 A1 = A2 = A4 = A5 = A7 = 0 X = −σt + 1
C2t

[c2t−1/C2x − σy(C1y

−c22C2(c5C1 − 2c6t))]

γ20 = c0, γ21 = − 1
2 (c1 + 1) A3 = −θ2(2C1η − B − 4c0) Y = t−1/C2 [− c2C1(c5c22C2−y)

C2t
+ 2c6c32]

+2c22c6C2 T = c2t−1/C2

ω14 = ω29 = ω21 = ω20 = 0 A6 = − 1
4 c6c22θ2C2(2C1η − 4c0 U =

σy

4C2
2t2

[c22C2Bt

C1
C2 (2c22c6C2t − c5c22

−B) + 1
4 θ4[(C1η − 2c0)(C1η C1C2 + C1y) + 2C2

1y2 − 4c22C1C2(c5C1

θ = c2t−1/(3+c1) −2c0 − B) − 4f0] + 1
4 c42c26C2

2 −2c6t)y − 8c42c6tC2
2 (c5C1 − c6t) + 2c42

c25C2
1C2

2 ] +
c2

4C2t2
t−1/C2 [C1(x − 1)

η = −c−2
2

1
3+c1

t−(1+c1)/(3+c1)y where C1 ≡ 1 + c1, C2 ≡ 3 + c1 (c5c22C2 − y) + 2t(2α − c6c22C2x − 2u)]

+c5t−(1+c1)/(3+c1) +
2c0

1+c1
+c2αtt−1/C2 + 1

4C2
2t2

(c1σ − 2C2σtt)

+c6t2/(3+c1) [c22C2(c5C1 − 2c6t) − C1y]

α = − 1
4c2C2

t1/C2 [(1 + 2c1)t−1 ∫
σdy

σ ≡ σ(y, t) arbitrary −C2
∫

σtdy − c22C2t−2/C2
∫

σyBdy

+σ(C1(c5c22C2 − y)t−1 − 2c22c6C2)]

2 γ14 = −3, γ29 = −4 A1 = A2 = A4 = A5 = A7 = 0 X = −σt − 2Iσy − c2x exp(c2t)

γ20 = c0, γ21 = 1 Y = 2c2yec2t + (2c4 + 2c3t − c3
c2

)ec2t

ω14 = ω29 = ω21 = ω20 = 0 A3 = θ2(4η + 4c1 + B) − 2c3
c2

T = exp(c2t)

θ = exp(c2t) U = 1
2 I[2σt − 3c2σ + σy(B exp(2c2t) + 4I)]

η = (c2y + c3t + c4)e−2c2t − c1 A6 = − 1
4c22

[−2c22θ4((η + c1) −( 1
2 c3 − c2u + c2α − αt) exp(c2t)

σ ≡ σ(y, t) arbitrary (2η + 2c1 + B) − 2f0) α = − exp(−c2t)
4 [

∫
(5c2σ − σt)dy + 2Iσ]

+c2c3θ2(4η + 4c1 + B) − c23] +
exp(c2t)

4
∫

σyBdy

where I ≡ c2y + c3t + c4 − c3
2c2

3 γ14 = c1, γ29 = c1 − 1 A1 = A2 = A4 = A5 = A7 = 0 X =
c2Ax

(3+c1)t
− 1

2c3
(3 + c1)(1 + c1)tη2

0t

γ20 = γ21 = ω14 = ω29 = ω21 = 0 − 1
4c3

(3 + c1)2t2η0ttη0t − ξ0t

θ = c2t−1/(3+c1) A3 = −θ2[2C1η′ − B] − 1
A2 [

(2+c1)(1+c1)yη0t
2c22c3(3+c1)t

+
(2+c1)yη0tt

c22c3

η = − c
−2
2 y

3+c1
t(−1−c1)/(3+c1) + η0 +2c

C2
2 C2η0tθ−C1 +

(3+c1)tyη0ttt
4c22c3

]

Y =
c2AC1y

C2t
+ c32A3C2η0tt

σ = ξ0 + y

4c22c3
t2/(3+c1) A6 = θ4

4 [C1η′(C1η′ − B) + 4c3ξ T = c2A

[(3 + c1)tη0tt + 2(1 + c1)η0t] −4f0] + 1
4 c

2C2
2 C2

2η2
0tθ−2C1 U ≡ UIII

− (1+c1)y2

4c42c3(3+c1)2
t−2(1+c1)/(3+c1) − 1

4 c
C2
2 C2η0tθ1−c1 [2C1η′ − B] α ≡ αIII

η′ ≡ η − η0, C1 ≡ 1 + c1 where A ≡ t
− 1

3+c1

ξ0 ≡ ξ0(t), η ≡ η0(t) arbitrary C2 ≡ 3 + c1

4 γ14 = −3, γ29 = −4, ω20 = c3 A1 = A2 = A4 = A5 = A7 = 0 X =
y exp(−2c2t)

4c2c3
(4c22η0t + 4c2η0tt

γ20 = γ21 = ω14 = ω29 = ω21 = 0 +η0ttt) + ξ0t − c2x exp(c2t)

θ = exp(c2t) A3 = θ2(4η − 4η0 − 2c−1
2 η0t + B) − η0tη0tt+4c2η2

0t
4c3c22

η = c2y exp(−2c2t) + η0 Y = 2c2y exp(c2t) − 1
c2

η0t exp(3c2t)

σ = − y exp(−2c2t)
4c3c2

(4c2η0t + η0tt) A6 = θ4

4c22
[−c2η0t(4η − 4η0 + B) T = exp(c2t)

+
c22y2

2c3
exp(−4c2t) − ξ0 +2c22(η − η0)B + 4c22η(η − 2η0) U ≡ UIV

ξ0 ≡ ξ0(t), η ≡ η0(t) arbitrary +4c22(η2
0 + c3ξ − f0) + η2

0t] α ≡ αIV

5 γ14 = 1, γ29 = 0 A1 = A2 = A4 = A5 = A7 = 0 X = −θtx +
(2θ2

ttθ−θ2
t θtt−θθtθttt)y

c1θ3θ2
t

γ21 = c2, γ20 = c3 A3 = θ2(6η′ + c1ξ + B) − 2θ3θ−1
t +

θttη0tθ−5θ2
t η0t−c1ξ0tθ2

t
c1θ2

t

ω14 = ω29 = c1 η0t − 2θ3θttθ−2
t η′ Y = −θ−1

t

[
(θttθ − 3θ2

t )y + η0tθ4
]

ω21 = c4, ω20 = c5 A6 = θ4
4 [9η′2 − 4f0 + 3(c1ξ + B)η′ T = θ

η = θ−3θty + η0 +4(c4η + c5)ξ] + 1
4 θ6θ−4

t θttη′ U ≡ UV

σ = (
θtt

θ2θtc1
− 5θt

c1θ3 ) + ξ0 (θttη′ + 2θtη0t) + 1
4 θ5θ−2

t [θη2
0t α =

θθtt−5θ2
t

4c1θ2θt

∫
Bdy + y2

8c1θ5θ2
t

[4θ2
t (5θ2

t

ξ0 ≡ ξ0(t) arbitrary while −(6η′ + c1ξ + B)θttη′] −2θttθ) + θ2(θtttθt − θ2
tt)]

η0 ≡ η0(t) and θ ≡ θ(t) are − 1
4 θ5θ−1

t η0t[6η′ + c1ξ + B] − y

4c1θ2θ2
t

[θθtt(θη0t − c1θtξ0)

given by equations (8) and (9). where η′ ≡ η − η0 −θ2
t (c1θξ0t − 4c1θtξ0 + 5θη0t)]

6 γ14 = c3, γ29 = c2, γ21 = c5 A2 = 4A1, A5 = 4, A6 = 0 X = −b1b2tb2−1x − ξ0t − b2c2(2b2b4t+b3b6)

c1b5t2b2+2

ω14 = c1 + c2, γ20 = c6 A1 = − c2θ3t
b2

Y =
b1tb2−1

b5
[b5b6y − 2c2b2b4b21t − c2b3b6b21]

ω29 = c1, ω20 = c4 A3 = t
c21b2θ2η2

2
{−c1η1tη2θ(3c2θt T = b1tb2

ω21 = c7 =
c5(c1−c2)

c2−c3
+2c1b8η2θ3) − c2(c2 − 2c1)η′η2θ2

t U ≡ UVI
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− c1(c22+2c1c2−3c1c3)
2(c2−c1) +c21c2θ4ξ0tη2

2 + c1c2θtθ(η′4η2t α = − c2y

4c1c2b1b5tb2+1 [c1b5((3b2 + 1)ξ0 − ξ0tt)

θ = b1tb2 , σ =
θt

c1θ3 y + ξ0 +η2
2θ2(c2ξ0 + c1ξ0 − c3η′ + B)) +c2b2t−b6 (2b2b4t + b3b6)] − b2y2(3b2+1)

8c1b31t3b2+2

η = η2y + η1 ≡ 3−5b6
2c2b21tb6 y −c21c2η2θ4η2t(ξ0 − ξ) + c1η′η2θ +

b2
4c1b1tb2+1

∫
Bdy

+{ 2b5b7
c1c22b2b6

+
b3t+b4

tb6
} (2c1θ3η2tb8 − c2θtt) + c21η3

2θ6

b2 =
c1(c3−c2)

4c1c2−5c1c3+c22
(b8(c1ξ + B) + c2(c3ξ0 − c2ξ))}

b5 = 5b2 + 1, b6 = 2b2 + 1 A4 =
c2θ3t(η1tη2−η2tη′)

b2η2
2

b7 = c2c8b2 − c6c1b5 A7 ≡ AVI7
ξ0 ≡ ξ0(t) arbitrary where η′ ≡ η1 − η, b8 ≡ c3 − c2

7 γ14 = γ29 = ω29 = c1 A2 = 4A1, A5 = 4, A6 = 0 X = −θtx − ξ0t + 2y

3c21θ4 (2c1c5θ6η2
2 + 3c1θ2

t

ω14 = 2c1, ω20 = c4, ω21 = c7 A1 = − c1θ4

θt
+θ3θtη2(c21 + 2c7)) +

θtη1t
c1η2θ3

γ21 = c5, γ20 = c6 A3 = η′
3c1θθtη2

(27c1θ2
t + 4θ3η2 Y = − θ(η2ty+η1t)

η2
, T = θ, U ≡ UVII

η = η2y + η1 (2c21θt + c7θt + c1c5θ3η2))

σ =
θt

c1θ3 y + ξ0 − 3η1t
η2

+ θ2(B − c1ξ0 + 3c1ξ) α = y2

24 c21θ5 [θtθ3η2(3c1c3 − 2c21 − 4c7)

ξ0 ≡ ξ0(t) arbitrary, η1 ≡ η1(t) +
c1θ3ξ0t

θt
+3(c2 − c1)θ2

t − 4c1c5θ6η2
2 ] + y

4c1θ4η2

η2 ≡ η2(t) and θ ≡ θ(t) are A4 = − c1θ3η′(c1η2θ3+3θt)
η2θt

[−η1tθt + c1η2θ3(c3ξ0θ2η2 + ξ0t)

determined by Eqs. (10)–(12) +
c1θ4η1t

θtη2
+(c1 + c2)θtθ2ξ0η2] +

θt
4c1θ2

∫
Bdy.

A7 ≡ AVII7, where η′ ≡ η1 − η

Note. The concrete forms of UIII, αIII, UIV, αIV, UV, UVI, AVI7, UVII, AVII7 and equations (8)–(12) are all given

out in the Appendix.

Hence, the full group theoretical explanation is given out for all the conditional similarity
reductions of the integrable (2+1)-dimensional KdV equation obtained by the modified CK’s
direct method in Ref. [9]. It is worth pointing out that the coefficients of the conditional equation
used in giving out the group explanation of the results resulting from the modified CK’s direct
method are permitted to be functions with respect to the space-time arguments. In the case
that all the coefficients in this added equation are fixed to be constants, we are still able to find
many conditional symmetry reductions by utilizing the extended classical and nonclassical Lie
group approaches [14] which are definitely recoverable by the modified direct method though
the related work has not yet been carried out.

4 Summary and discussions

By extending both the CK’s direct method and the Lie group approach, we can obtain the
conditional similarity reductions. The crucial point for this kind of reduction is that the one
reduction field of a given NPDE needs to satisfy more than one reduction equation. From the
detailed description in the last two sections, one can notice much freedom or arbitrariness in
both the modified CK’s direct method and the extended Lie group approach. For the modified
CK’s direct method, we need to separate the resulting equation (3). Obviously, the division
is quite arbitrary. Moreover, the values of Fl for l > L can be set arbitrarily. While for the
extended Lie group approach, the choice of the constrained equation is rather arbitrary. Many
different useful results will be generated with different selections of the conditional equations.
Anyhow, we do believe that the conditional similarity reductions obtained from the modified
CK’s direct method can definitely be reobtained from the extended Lie group approach and vice
versa through ascertaining or balancing the arbitrariness between these two methods.

Furthermore, on the other hand, one can also see that the constrained equations introduced
in the extended Lie group approach have little relation with the model equation under inves-
tigation. However, as for the nonintegrable JM equation, the conditional equation forms an
integrable system with the JM equation. Therefore, probably we can decrease the arbitrariness
by considering a constrained equation which has some possible relation with the studied equa-
tion especially for the nonintegrable models. All in all, the search of a method to introduce



Group Explanation for the Conditional Similarity Reductions 257

a constrained equation for the model equation into the extended classical and nonclassical Lie
group approaches is still in progress.

Appendix

−1
2
c1θ

2θ2
tt +

(
3
4
c1 + c4

)
θθ2

t θtt +
1
4
θtc1θ

2θttt +
(

c1c1 − 3
2
c1 − 5c4

)
θ4 = 0, (8)

(4c4θtθθtt − 20c4θ
3 + 4c1c2θ

3
t )η0 + θ2θtc1η0tt

+ (6c1θθ
2
t − 2c1θ

2θtt)η0t − 20c5θ
3
t + 4c1c3θ

3
t + 4c5θθtθtt = 0. (9)

θη2t − c1θ
3η2

2 − 3η2θt = 0, (10)

c1θη1tt − 2c1η1t(c1η2θ
3 + 3θt) + 4θ2η2θt(c8 + c7η1) + 4c1θ

5η2
2(c6 + c5η1) = 0, (11)

3c1θθtt − 12c1θ
2
t − (c2

1 − 4c7)η2θ
3θt + 4c1c5η

2
2θ

6 = 0. (12)

UIII = c2Aαt +
c1C

2
1y3

16c3(c2C2tA)4
− c1C1ξ0y

4C2
2 t2

+
1

4c3
c2
2C1C

2
2A2t2η3

0t +
C1y

2η0ttt

8c3c2
2A

2
+

C1ξ0ty

2C2t

+
η2
0t

8c3
[c2

2C
3
2A2t3η0tt + c2

2C1C2A
2Bt + 3C1(2 + c1)y] +

c2A

4C2t2
[C1y(1 − x)

− 4(u − α)t] + η0t

[
C2t

16c3
(η0tt(c2

2C2A
2Bt + 9(2 + c1)y) + 2C2η0tttyt) +

1
2
c2
2C2A

2ξ0tt

+
c1C1By

8c3C2t
− 1

4
c3
2(C2x + C1)A3 − 1

4
c2
2c1A

2ξ0 +
C1(2c2

1 + 11c1 + 8)y2

16c3(c2C2At)2

]

− C2
1By2

8c3c2
2C

3
2A2t3

+
η0tt

16c3

[
C1By − 4c3

2c3C2A
3t +

C1(16 + 7c1)y2

C2c2
2A

2t

]
,

αIII =
C1C2η

2
0tyt

8c2c3A
+

η0t

16c2c3A

[
C2

2η0ttyt2 + 2C1

∫
Bdy +

2C1y
2

c2
2C2A2t

]
+

C2η0ttty
2t

32c3
2c3A3

− c1ξ0y

4c2C2At

+
η0tt

32c2c3A

[
2C2t

∫
Bdy +

y2(3c1 + 8)
c2
2A

2

]
− C1

∫
yBdy

8c3c3
2C

2
2A3t2

+
c1C1y

3

48c3c5
2C

3
2A5t3

+
ξ0ty

4c2A
,

αIV = −(4c2η0t + η0tt)e−c2t

16c2c3

∫
Bdy +

c2
2e

−3c2t

4c3

∫
yBdy − c3

2y
3e−5c2t

8c3
+

y2e−3c2t

32c2c3

× (−η0ttt + 8c2
2η0t − c2η0tt) +

ye−c2t

16c3c2
2

(−4c3c
2
2ξ0t + 12c3

2c3ξ0 + 4c2η
2
0t + η0tη0tt),

UIV = (c2u − c2α + αt)ec2t +
y2e−2c2t

8c3
(4c3

2B + 7c2
2η0t − 5c2η0tt − 2η0ttt)

+
e3c2t

4c2
(2c2η0t + η0tt) +

e2c2t

16c3
2c3

[Bc2η0t(4c2η0t + η0tt) − 2η0t(4c2η
2
0t + η0tη0tt

+ 6c3
2c3ξ0 − 4c3c

2
2ξ0t)] − 3c4

2y
3e−4c2t

4c3
+

y

16c3c2
2

[8c3c
3
2(3c2ξ0 − 2ξ0t)

− 2c2
2B(6c2η0t + η0tt) + η0t(12c2

2η0t + 9c2η0tt + 2η0ttt)],

UV =
y2(θttθ − 3θ2

t )
4c1θ3

t θ
5

(3θ2
ttθ

2 − 2θtθtttθ
2 + 7θ2

t θttθ − 20θ4
t ) −

x(θ2
t − θttθ)
4θθ2

t

(3θ2
t y − θθtty

− η0tθ
4) − y

4c1θ2θ3
t

[θ5
t (12c1ξ0 − 3c1θ + 15B) − θη0t(10θ4

t − 9θθ2
t θtt + 5θ2θ2

tt

− 2θ2θtθttt) + θ2θtθ
2
tt(c1θ + B + c1ξ0) − θθ2

t θtt(−3c1θθt − 2c1θξ0t + 7c1θtξ0 + 8θtB)

− c1θθ
2
t (6θ2

t ξ0t + θ2θttt)] +
1

4c1θ3
t

[θ2θtη0t(−θθtt(c1θ + B + c1ξ0) − 2c1θθtξ0t + (3c1θ

+ 5B + 4c1ξ0)θ2
t ) + 4c1θθ

3
t αt + 2θ3η2

0t(θθtt − 5θ2
t ) + c1θ

2
t (θ

4η0tt − 4θ2
t α)] + θtu,
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AVI7 = − t

4b2c2
1θ

2η4
2

{−c1η
2
1tη

2
2θ(2c2θt + c1b8η2θ

3) − c2η2η2tη
′(c2

1η2θ
4ξ0t − (c2 − 2c1)η′θ2

t )

+ η2η1t[c2(2c1 − c2)θ2
t η2η

′ + c2
1θ

6η3
2(b8(B + c1ξ) + c2(c3ξ0 − c2ξ))

+ c2
1θ

4η2(2b8η2tη
′ + c2η2t(ξ − ξ0) + c2ξ0tη2) + c1c2θ

3θtη
2
2(B + (c2 + c1)ξ0 − c3η

′)

+ c1c2θη
′(5θtη2t − θttη2)] − c1c2θθtη

′η2t[3η′η2t + η2
2θ

2((c2 + c1)ξ0 − c3η
′ + B)]

+ c1η2tη
′η2θ[c2η

′θtt − c1η
2
2θ

5(b8(B + c1ξ) + c2(c3ξ0 − c2ξ))] − 4c2
1η

5
2θ

8(b8f0 − c2f1

+ (c8b8 − c2c6)ξ + (c7b8 − c2c5)ξη) + c2
1η2θ

4η2
2tη

′(−b8η
′ + c2(ξ0 − ξ))},

UVI = −b1xtb2−2

4b5
[b6b5y − c2b

2
1(b3b6 + 2b2b4t)] +

y

4c1b5t2
[c1b5b6(2ξ0tt − (3b2 + 1)ξ0 + b1t

b2)

+ c2b2b5b6B − c2b2(b2 + 1)t−2b2−1(b3b6 + 2b2b4t)] + b1t
b2−1(b2u + b1αtt)

− c2b
2
1

4c1b5t2
(2b2b4t + b3b6)[2c1ξ0tt + b2B − c1ξ0(3b2 + 1)] − b2b6(3b2 + 1)y2

4c1b2
1t

2b2+3

+
b1

4c1b2
5

[2c2
2b1b2b3b6t

−2b2−3(b3b6 + 4b2b4t) + 8c2
2b1b

3
2b

2
4t

−b6

− c1b5t
b2−2(c2b

2
1b3b6 + 4b2b5αt)],

AVII7 =
c1θ

2ξ0t

4θtη2
[η′(3θt + c1η2θ

3) − θη1t] +
θtη

′

4c1η2
2θ

[3c1(Bθ2η2 + 4η1t) + θ2η2η
′(4c7 + 11c2

1)

− 3c2
1θ

2η2(ξ0 − 3ξ)] − θ2η1t

12c1η2
[(4c7 + 11c2

1)η
′ + 3c1(B − c1ξ0 + 3c1ξ)]

+
θ4η′

12
[(5c2

1 + 4c7 + 12c5)η′ + 3c1(B − c1ξ0 + 3c1ξ)] − θ5

3θt

[
c5η

′(η1t − c1θ
2η2η

′)

+ 3c1θ
2η2(c6ξ + c5ξη + f1)

]
+

9(η1 − η)2θ2
t + θ2η2

1t

2η2
2θ

2
,

UVII = − x

4θη2
(5θt + c1η2θ

3)(3η2θty + c1η
2
2θ

3y + θη1t) − η2θ
5(c5η1 + c6) + θαt + θt(u − α)

+
θ2

4c1
[c1η1t(c1θ − c3ξ0) − 4θt(c8 − c7η1)] − η1t

4c1η2
2θ

3
[c1θ

3η2(2ξ0t − 3θt) − 2θtη1t

+ θtθ
2η2(B + (c1 + c2)ξ0)] +

(c1η2θ
3 + 3θt)y2

12c2
1θ

5
[4(c2

1 + 2c7)θ3θtη2

− c1θ
3η2(3c3θt − 8c5θ

3η2) − 3(c2 − 3c1)θ2
t ] −

y

12c2
1η2θ4

{3c2
1θ

9η3
2(4c5 − c2

1)

+ 3c3
1c3θ

8η3
2ξ0 + 3η1tθ

2
t (c2 − 9c1) − 2c1θ

6η2
2(9c2

1θt − 3c2
1ξ0t − 6c7θt + 4c5η1t)

+ 3c2
1θtθ

5η2
2((c1 + c2)ξ0 + 3c3ξ0 + B) + 9c1θ

2
t θ

2η2((c1 + c2)ξ0 + B)

+ θtθ
3η2[c2

1(18ξ0t − 27θt − 10η1t) + η1t(3c1c3 − 8c7)]}.
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