
Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 486–492

Relation between Periodic Soliton Resonance

and Instability

Masayoshi TAJIRI

Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
E-mail: tajiri@ms.osakafu-u.ac.jp

There are periodic soliton resonances in interactions between two periodic solitons and
between periodic soliton and another kind of soliton. A close relation exists between the
periodic soliton resonance and soliton instability to transverse disturbances. It is shown that
the instability occurred in the line soliton is relaxed by emission of the periodic soliton and
the periodic soliton resonance is inverse process of the instability.

1 Introduction

The dynamics of nonlinear waves in higher-dimensional space have richer phenomena than one-
dimensional case, since various localized structures may be considered as candidates for solitons.
The two-dimensional generalization of the Korteweg–de Vries (KdV) equation was given by
Kadomtsev and Petviashvili to discuss the stability of one-dimensional KdV soliton (line soliton
in two dimensions) against transverse long-wave disturbances, which is known as the Kadomtsev–
Petviashvili (KP) equation and is expressed as follows [1],

(ut + 6uux + uxxx)x + 3suyy = 0, s = ±1. (1)

The propagation property of solitons depends essentially on the sign of s in equation (1). In the
media with negative dispersion (s = +1), line solitons are stable to long transverse perturbations.
On the other hand, line solitons are unstable for positive dispersion (s = −1) [1]. This leads
to the conjecture that solutions having two-dimensional localized structures should be found
in the positive dispersion case. Such solitons were found by Manakov et al. [2] and Ablowitz
and Satsuma [3], which have no longer exponential tails, but instead take the form of rational
functions in both space and time variables.

The N line soliton solution was obtained by Zakharov and Shabat [4] and Satsuma [5].
Miles [6] found the existence of the singular parameter regime for multi-soliton solutions in
the negative dispersion case, where the solutions become singular. He showed that the two-
soliton solution reveal a resonant interaction when it is just on the borderline between regular
and singular regimes in the parameter space. In this case, when the relative inclination between
wave normals is at a certain small critical angle, two solitons interact strongly to make a resonant
soliton from a point at which two incident solitons meet together. Such a resonant interaction
is called “soliton resonance”. On the other hand, in the positive dispersion media, the solution
which describes the interaction between two line solitons never satisfies the resonant condition.

Another kind of two-dimensional localized soliton in the positive dispersion media is a periodic
soliton, which was found by Zaitsev at first by superposition of rational solitons (algebraic
solitons) [7]. The periodic soliton solutions which describe the multi-soliton interactions have
been obtained by Tajiri and Murakami [8]. The stability for the y-periodic and x-periodic
solitons has been discussed by Zhdanov [9], using the dressing method. He also obtained the
solution which describes the nonlinear stage of instability of the line soliton propagating in
the x-direction and pointed out the decay of a one-dimensional soliton into a soliton of lower
amplitude and a periodic soliton.
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As there are three kinds of solitons, line soliton, algebraic soliton and periodic soliton, various
interactions between two different kinds of solitons may happen in the positive dispersion media.
The interactions between two periodic solitons, periodic soliton and line soliton, line soliton and
algebraic soliton and periodic soliton and algebraic soliton have been studied by several authors
[10–16]. Thing to be most emphasized among them is the existence of resonant interactions
between two periodic solitons and between periodic soliton and another kind of soliton. Here
we call them “periodic soliton resonances”, which are qualitatively different from the resonant
interaction between two line solitons (soliton resonances) of the KP equation with negative
dispersion. Periodic soliton resonances are irrelevant to the divergence of soliton solutions. This
is crucially different from the case of soliton resonances.

Another equation having two-dimensional localized soliton solutions is the Davey–Stewartson
(DS) equation [17]:

iut + puxx + uyy + r|u|2u − 2uv = 0,

vxx − pvyy − r
(|u|2)

xx
= 0, (2)

where p = ±1, r is constant. This is the two-dimensional generalization of the nonlinear
Schrödinger (NLS) equation. Equation (2) with p = +1 and p = −1 are called the DSI and
DSII equations, respectively. Anker and Freeman [18] studied the interactions between two dark
line solitons which are skewed with respect to each other and found the existence of soliton
resonances. The DS equation has algebraic soliton and periodic soliton solutions in addition to
the dark line soliton solution [19]. In the previous paper, the interactions between two periodic
solitons, between dark line soliton and periodic soliton, and between algebraic soliton and peri-
odic soliton were investigated [20, 21]. We found the existence of periodic soliton resonances in
each case.

The existence of solitons having the structures peculiar to high-dimensionality may contribute
to the variety of the dynamics of nonlinear waves. Especially, we expect that the periodic soliton
resonances play fundamental role in the nonlinear development of high-dimensional wave fields
as the existence of periodic solitons is related to the instability of solitons.

The purpose of this study is to show that we can discuss the problem of the stability of
solitons by making use of the solutions of periodic soliton resonance.

2 Soliton stability theory due to periodic soliton
resonance solutions

2.1 Stability of the line soliton of the KP equation with positive dispersion

At first, we consider the resonant interaction between line soliton and y-periodic soliton which
propagate in the same direction. Although we can obtain the expressions that describe the
general interaction between solitons in arbitrary directions, we limit our concern into the solitons
that extend in the y-direction and propagate in the x-direction. The solutions that describe the
interaction between line soliton and y-periodic soliton are given by [13]

u = 2(log f)xx, (3)

with

f = 1 − eξP cos η +
M

4
e2ξP + eξL

(
1 − NeξP cos η +

MN2

4
e2ξP

)
, (4)

where

ξP = αx − ΩP t + σP , ξL = Px − ΩLt + σL, η = δy + θ,
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Figure 1. The schematic diagram of the world line of the soliton humps in the x − t plane. AB cor-
responds to the quasi-resonant state. On line ab; ξP + (1/2)Γ � O(1) and on line cd; ξL + Γ � O(1).

ΩP = α3 + 3
δ2

α
, ΩL = P 3, M =

δ2

δ2 − α4
, N =

(α − P )2 − (δ/α)2

(α + P )2 − (δ/α)2
, (5)

where σP , σL and θ arbitrary real constants. The phase shift due to the interaction between
line soliton and y-periodic soliton is determined only by N . In the case αP > 0, the phase shift
in the propagating direction is given by Γ = log |N | while that in the transverse direction is
determined by the sign of N .

The resonant conditions are obtained by equating the denominator of N to zero as follows,

δ

α2
=

P

α
+ 1, (6)

δ

α2
= −P

α
− 1. (7)

Fig. 1 is the schematic diagram of the world lines of the soliton humps in the x − t plane for
the attractive interaction (Γ > 0). The line AB in Fig. 1 corresponds to the quasi-resonant
state and at the midpoint M of the world line AB, the quasi-resonant state reaches the most
resonant state. When we replace ξP + 1

2 ln |N | and ξL + ln |N | with ξ̃P and ξ̃L, respectively, so
as to ξ̃P ∼ ξ̃L ∼ O(1) at the most resonant point M , that is,

ξP +
1
2

log |N | = ξ̃P ∼ O(1), σP +
1
2

log |N | = σ̃P ,

ξL + log |N | = ξ̃L ∼ O(1), σL + log |N | = σ̃L,

(see Fig. 1) equation (4) is rewritten as follows;

f = f (0) +
1√|N |f

(1) +
1
|N |f

(2), (8)

with

f (0) = 1 +
M

4
eξ̃L+2ξ̃P , (9)

f (1) = − eξ̃P

{
cos η + eξ̃L cos(η + επ)

}
, (10)
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f (2) = eξ̃L +
M

4
e2ξ̃P , (11)

where ε = 0 for N > 0 and ε = 1 for N < 0. Taking the limit |N | → ∞, we see that the resonant
soliton is the line soliton with wave number (P/2 + α). If we take |N | � 1, equation (8) shows
that the quasi-resonant state consists of the resonant line soliton and small disturbance. The
disturbance becomes minimum at midpoint M . The line ME in Fig. 1 corresponds to the
period of the linear development of the disturbance on the resonant line soliton. Substituting
equation (8) into u = 2(log f)xx, and neglecting the terms of O(1/|N |), we have

u = u(0) +
1√|N |

{
−2u(0) f

(1)

f (0)
+

2
f (0)2

(
f (0)

xx f (1) + f (0)f (1)
xx − 2f (0)

x f (1)
x

)}
, (12)

where

u(0) =
1
2
P 2

0 sech2 1
2

(P0x − Ω0t + σ0) ,

which is resonant line soliton solution, where σ0 = 2σ̃P +σ̃L+log
(

M
4

)
. Substituting equations (9)

and (10) into equation (12) and replacing ξ̃L with

ξ̃L =
P

P0
ξ0 +

(
P

P0
Ω0 − ΩL

)
t − P

P0
σ0 + σ̃L, (13)

we have [22]

u = u(0) +
u(0)

√
MNL

[{
2 sech

ξ0

2
− 4α (α + P )

P 2
0

(
A cosh

1
2
ξ0 − B sinh

1
2
ξ0

)}

× exp
(

P

2P0
ξ0 +

1
2

(
− P

P0
σ0 + σ̃L

))
eγt

+
{

2 sech
ξ0

2
− 4α (α + P )

P 2
0

(
A cosh

1
2
ξ0 + B sinh

1
2
ξ0

)}

× exp
(
−
{

P

2P0
ξ0 +

1
2

(
− P

P0
σ0 + σ̃L

)})
e−γt

]
cos η, (14)

where

γ =
1
2

(
P

P0
Ω0 − ΩL

)
. (15)

Substituting the relation P=P0−2α into the resonant condition, α + P − (δ/α) = 0, we have

α =
1
2

(
P0 −

√
P 2

0 − 4δ

)
, (16)

P =
√

P 2
0 − 4δ. (17)

When we substitute equations (16) and (17) into the dispersion relations of line soliton and
y-periodic soliton, ΩP and ΩL can be expressed by P0 and δ. Then we have the growth rate γ,

γ = 2δ
√

P 2
0 − 4δ, (18)

which is the same as the result obtained by Zhdanov by using the dressing method [9]. Taking
the long limit |δ| � 1 (α � 1), we have

α � δ

P0
,

4α(α + P )
P 2

0

A � 4α(α + P )
P 2

0

B � 2
(

1 − 2δ

P 2
0

)
,
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and then

γ � 2δP0, (19)

u � u(0) − 2√
MNL

1
P0

[
C

{
−P 3

0

2
sech2

(
1
2
ξ0

)
tanh

(
1
2
ξ0

)

− γ

2

(
sech2

(
1
2
ξ0

)
− ξ0

2
sech2

(
1
2
ξ0

)
tanh

(
1
2
ξ0

))}
eγt

− 1
C

{
−P 3

0

2
sech2

(
1
2
ξ0

)
tanh

(
1
2
ξ0

)
−
(−γ

2

)(
sech2

(
1
2
ξ0

)

− ξ0

2
sech2

(
1
2
ξ0

)
tanh

(
1
2
ξ0

))}
e−γt

]
cos η, (20)

where C = exp
{
−(1/2)

(√
P 2

0 − 4δσ0/P0 − σ̃L

)}
. It is very interesting to note that these

equations are expressed only by the wave number of resonant line soliton, P0, and the wave
number of the disturbance δ. We can see that the solution (20) has the growing term and
decaying term.

2.2 Stability of the line soliton of the DSI equation

In this section, the stability of the line soliton to the DSI equation is studied by making use of
the solution of periodic soliton resonance. The solution describing the interaction between line
soliton and y-periodic soliton is given by

u = u0e
iζ g

f
, v = −2 (ln f)xx (21)

with

f(ξP , ξL) = 1 + eξP cos η +
M

4
e2ξP + eξL

{
1 + NeξP cos η +

MN2

4
e2ξP

}
, (22)

g(ξP , ξL, φP , φL) = f(ξP + iφP , ξL + iφL), (23)

where

ζ = kx + ly − ωt, ξP = αx − ΩP t + σP ,

ξL = Px − ΩLt + σL, η = δy − γP t + θ,

sin2(φP /2) = (α2 + δ2)/(2ru2
0), sin2(φL)/2) = P 2/(2ru2

0),

ΩP = 2kα − (α2 − δ2) cot(φP /2), γP = 2lδ,

ΩL = P{2k − P cot(φL/2)}, M = {1 − (α2 + δ2)2/(2δ2ru2
0)}−1,

N =
2ru2

0 sin(φP /2) sin(φL/2) cos{(φP − φL)/2} − αP

2ru2
0 sin(φP /2) sin(φL/2) cos{(φP + φL)/2} − αP

. (24)

When we replace ξP + 1
2 ln |N | and ξL + ln |N | with ξ̃P and ξ̃L, respectively, so as to ξ̃P ∼ ξ̃L ∼

O(1) at the most resonant point M , equations (22) and (23) are rewritten as follows [23]:

f = f (0) +
1√|N |f

(1) cos η +
1
|N |f

(2),

g = g(0) +
1√|N |g

(1) cos η +
1
|N |g

(2), (25)
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where

f (0) = 1 +
M

4
exp(ξ̃0), (26)

g(0) = 1 +
M

4
exp(ξ̃0 + iΦ), (27)

f (1)(ξ̃P , ξ̃L) = exp(ξ̃P )
{

1 + ε exp(ξ̃L)
}

, (28)

f (2)(ξ̃P , ξ̃L) = exp(ξ̃L) +
M

4
exp(2ξ̃P ), (29)

g(j) = f (j)(ξ̃P + iφP , ξ̃L + iφL) (j = 1, 2), (30)

where Φ = 2φP + φL, P0 = 2α + P , Ω0 = 2ΩP + ΩL, ξ̃0 = 2ξ̃P + ξ̃L = P0x − Ω0t + 2σ̃P + σ̃L

and ε = 1 for 0 < N , ε = −1 for N < 0. Taking the limit |N | → ∞, we have the resonant line
soliton solution with wave number P0 and phase Φ as follows,

u0 = u0eiζ 1 + eξ0+iΦ

1 + eξ0
, v0 = −P 2

0

2
sech2 1

2
ξ0, (31)

where ξ0 = ξ̃0 + (1/2) log(M/4). Using the resonant condition, and dispersion relations of
y-periodic soliton and line soliton, we obtain

P 2 = P 2
0 − 4δ2 ± 4

(√
2ru2

0 − P 2
0

)
δ. (32)

Taking account of the relations, α = (P0 − P )/2, sin2(φL/2) = P 2/2ru2
0 and φP = (Φ − φL)/2,

we see that P , α, φL, φP , ΩP and ΩL are expressed by P0, Φ and δ. Therefore, the quasi-
resonant solution is expressed by parameters (P0, Φ, δ), which are the wave number and the
phase of resonant line soliton and the wave number of transverse disturbance on the resonant
line soliton, respectively. Neglecting the terms of O(1/N), we have [23].

u = u0eiζ

[
g(0)

f (0)
+

1√|N |
g(0)

f (0)

(
g(1)

g(0)
− f (1)

f (0)

)
cos η

]
, (33)

v = −2
f

(0)
xx f (0) − f

(0)2

x

f (0)2
+

1√|N |

[{
4
f

(0)
xx f (0) − f

(0)2

x

f (0)2

f (1)

f (0)

− 2
f (0)2

[
f (0)

xx f (1) − 2f (0)
x f (1)

x + f (0)f (1)
xx

]}
cos η

]
. (34)

It should be noted that the magnitude of the initial disturbance (the magnitude of the distur-
bance on the resonant line soliton at the most resonant state) is of the order (1/

√|N |). The
second term of equations (33) and (34) describes the linear development of the disturbance on
the resonant line soliton. Regarding the quasi-resonant soliton solution at the most resonant
state as the initial state, we can size the full-time evolution up to the nonlinear stage of the
soliton with a small disturbance undergoing the instability by using the quasi-resonant solution.
From these facts, we can expect that the instability occurred in the line soliton is relaxed by
the emission of the periodic soliton and the periodic soliton resonance is inverse process of the
instability.
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