On Polynomial Identities in Algebras Generated by Idempotents and Their *-Representations

Vyacheslav I. RABANOVICH and Alexander V. STRELETS

Institute of Mathematics of NAS Ukraine, 3 Tereschenkivska Str., 01601 Kyiv-4, Ukraine E-mail: slavik@imath.kiev.ua, sav@imath.kiev.ua

Abstract

Among algebras generated by linearly dependent idempotents we look for algebras with polynomial identities. One of the way to find a polynomial identity in an algebra is to calculate a linear basis for this algebra, build a "big" family of representations and prove using the basis that it is a residual family. In the paper was found a linear basis for some algebra generated by idempotents.

1 Introduction

Algebras generated by linearly dependent idempotents are investigated in the paper. Among these algebras we look for algebras with polynomial identities, so called PI-algebras (see, for example, [1]). The theory of $P I$-algebras is well developed and gives additional information about algebras. So for applications it is important to determine that an algebra has a polynomial identity. One of the way to find a polynomial identity in an algebra is to calculate a linear basis for this algebra, build a "big" family of representations such that the supremum of dimensions of representations from the family is finite and prove that it is a residual family (see [2, Theorem 2] or [3]).

Algebras which we are interested in are

$$
\mathbf{Q}_{n, \bar{\lambda}}=\mathbb{C}\left\langle q_{1}, \ldots, q_{n} \mid q_{k}^{2}=q_{k}, \sum_{k=1}^{n} \lambda_{k} q_{k}=e\right\rangle,
$$

$n \in \mathbb{N}, \bar{\lambda} \in \mathbb{C}^{n}$, and its factor-algebras $\mathbf{Q}_{n, \bar{\lambda}} /\left\{q_{i_{l}} q_{j_{l}}=q_{j_{l}} q_{i_{l}}=0\right\}_{l=1}^{m}$ where $i_{l} \neq j_{l} \in\{1, \ldots, n\}$.
In paper [4] a criterion was given when algebras $\mathbf{Q}_{n, \bar{\lambda}}$ are $P I$-algebras (note that the case $\lambda_{i}=\frac{1}{\lambda}$ was studied in the paper [5]). We remind the respective results.

In the case $n \leqslant 3$ all algebras $\mathbf{Q}_{n, \bar{\lambda}}$ are finite-dimensional and so they are $P I$-algebras. In the case $n \geqslant 4$ all algebras $\mathbf{Q}_{n, \bar{\lambda}}$ are infinite-dimensional. Let $\hat{\delta}(\bar{\lambda})=1-\frac{1}{2} \sum_{j=1}^{n} \lambda_{j}$. Then we have the following results.

Theorem 1. If $\hat{\delta}(\bar{\lambda}) \neq 0$ then the algebra $\mathbf{Q}_{4, \bar{\lambda}}$ is not a PI-algebra.
Corollary 1. When $n \geqslant 5$ all algebras $\mathbf{Q}_{n, \bar{\lambda}}$ are not PI-algebras.
Theorem 2. If $\hat{\delta}(\bar{\lambda})=0$ then the algebra $\mathbf{Q}_{4, \bar{\lambda}}$ is an F_{4}-algebra, i.e.

$$
\sum_{\sigma \in S_{4}}(-1)^{p(\sigma)} v_{\sigma(1)} v_{\sigma(2)} v_{\sigma(3)} v_{\sigma(4)}=0,
$$

for any elements $v_{1}, v_{2}, v_{3}, v_{4} \in \mathbf{Q}_{n, \bar{\lambda}}$, where S_{4} is a symmetric group.

The Corollary 1 shows that when $n \geqslant 5$ algebras $\mathbf{Q}_{n, \bar{\lambda}}$ are not $P I$-algebras. But if we add some relations, for example, relations of commuting $\left(q_{i} q_{j}=q_{j} q_{i}\right)$ or orthogonality ($q_{i} q_{j}=0$) for some generators, then some of obtained factor-algebras are $P I$-algebras and are infinite-dimensional.

In paper [6] for the algebra

$$
\mathcal{R}=\mathbb{C}\left\langle p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3} \mid q_{k}^{2}=q_{k}, p_{k}^{2}=p_{k}, p_{k} q_{k}=0, \sum_{k=1}^{3}\left(p_{k}+2 q_{k}\right)=3 e\right\rangle,
$$

the following results were obtained:
Lemma 1. The algebra \mathcal{R} is infinite-dimensional and has the quadratic growth.
Theorem 3. The algebra \mathcal{R} is an F_{6}-algebra.
In both cases to prove Theorem 2 and Theorem 3 a residual family for corresponding algebras was found.

In this paper we will find a linear basis of an algebra

$$
\mathbf{A}=\mathbb{C}\left\langle a, b \mid a^{3}+\alpha_{1} a+\alpha_{0}=0, b^{3}+\beta_{1} a+\beta_{0}=0,(a+b)^{3}+\gamma_{1}(a+b)+\gamma_{0}=0\right\rangle
$$

where $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathbb{C}$. But first we give some argumentation to solve this problem. Consider algebras

$$
\mathbf{A}^{\prime}=\mathbb{C}\left\langle p_{1}, p_{2}, p_{3}, q_{1}, q_{2}, q_{3} \mid q_{k}^{2}=q_{k}, p_{k}^{2}=p_{k}, p_{k} q_{k}=0, \sum_{k=1}^{3}\left(\mu_{k} p_{k}+\nu_{k} q_{k}\right)=e\right\rangle,
$$

where $\mu_{k}, \nu_{k} \in \mathbb{C}, \mu_{k} \neq \nu_{k}, \sum_{k=1}^{3}\left(\mu_{k}+\nu_{k}\right)=3$ (in the case of $\mu_{k}=1 / 3, \nu_{k}=2 / 3$ we have the algebra \mathcal{R}). To find an answer the question whether some family of representations is a residual family we need a linear basis in this algebra or in some algebra which is isomorphic with this one.

The algebra \mathbf{A}^{\prime} and an algebra

$$
\mathbf{A}^{\prime \prime}=\mathbb{C}\left\langle x_{1}, x_{2}, x_{3} \mid x_{1}+x_{2}+x_{3}=e, x_{k}\left(x_{k}-\mu_{k}\right)\left(x_{k}-\nu_{k}\right)=0\right\rangle
$$

are isomorphic. A map $x_{k} \mapsto \mu_{k} p_{k}+\nu_{k} q_{k}$ is a corresponding isomorphism. A map $x_{k} \mapsto$ $x_{k}^{\prime}+\left(\mu_{k}+\nu_{k}\right) / 3$ gives isomorphism between the algebra $\mathbf{A}^{\prime \prime}$ and an algebra

$$
\mathbf{A}^{\prime \prime \prime}=\mathbb{C}\left\langle x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime} \mid x_{1}^{\prime}+x_{2}^{\prime}+x_{3}^{\prime}=0, f_{k}\left(x_{k}\right)=0\right\rangle
$$

where f_{k} are polynomials such that $\operatorname{deg} f_{k}=3$ and sum of roots is zero. So this algebra and the algebra \mathbf{A} are isomorphic.

2 A linear basis in the algebra A

We introduce a homogeneous lexicographical order on words in alphabet $\{a, b\}: a<b$. Using the Diamond Lemma (for definitions of the notions Gröbner basis, reductions, compositions, growth of an algebra etc. see review [7] and references therein) we will prove the following theorem which describes a linear basis in the algebra \mathbf{A}. We will denote reductions by symbol \rightarrow.

Theorem 4. The set of words

$$
\left\{a^{\sigma_{1}}\left(b a^{2}\right)^{n}(b a)^{m} b^{\sigma_{2}} \mid \sigma_{1}, \sigma_{2} \in\{0,1,2\}, n, m \in \mathbb{N} \cup\{0\}\right\}
$$

is a linear basis of the algebra \mathbf{A}.

Proof. Let us introduce notations

$$
\begin{aligned}
p & =-\alpha_{1} a-\alpha_{0} \\
q & =-\beta_{1} b-\beta_{0} \\
s & =\gamma_{1}(a+b)+\gamma_{0} \\
r & =s+p+q \\
\Lambda & =b a b+b a^{2}+a b^{2}+a b a+a^{2} b
\end{aligned}
$$

Then $(a+b)^{3}+\gamma_{1}(a+b)+\gamma_{0} \rightarrow b^{2} a+\Lambda+r$. So we have an ideal I generated by elements $a^{3}-p, b^{3}-q, b^{2} a+\Lambda+r$. Let G be the set of this elements. The main words of the set G are $b^{3}, b^{2} a$ and a^{3}. So we have 7 compositions:

$$
b \cdot b^{2} \cdot b, b^{2} \cdot b \cdot b^{2}, b \cdot b^{2} \cdot a, b^{2} \cdot b \cdot b a, a \cdot a^{2} \cdot a, a^{2} \cdot a \cdot a^{2} \text { and } b \cdot b a \cdot a^{2}
$$

The first composition is a sub-word of the second, the third is a sub-word of the fourth and the fifth is a sub-word of the sixth, so by the Triangle Lemma (see for example [7, sec. 2.10]) it is enough to calculate only the first, the third, the fifth and the seventh compositions. But the first and the fifth compositions are reduced to 0 because $[b, q]=0$ and $[a, p]=0$.

By reductions of the third composition we get 0 :

$$
\begin{aligned}
b \cdot b^{2} \cdot a: & b \Lambda+b r+q a^{2}=\underline{\underline{b^{2} a b}}+\underline{b^{2} a^{2}}+\underline{\underline{b a b^{2}}}+\underline{b a b a}+\underline{\underline{b a^{2} b}}+b r+q a \\
& =\left(b^{2} a+b a b+b a^{2}\right) b+\left(b^{2} a+b a b\right) a+b r+q a \\
& \rightarrow-\left(a b^{2}+\underline{a b a}+\underline{a^{2} b}+r\right) b-\left(b a^{2}+\underline{a b^{2}}+\underline{a b a}+\underline{a^{2} b}+r\right) a+b r+q a \\
& \rightarrow-a\left(b^{2} a+b a b+b a^{2}+a b^{2}+a b a\right)-b p+[q, a]+[b, r]-r a \\
& \rightarrow a\left(a^{2} b+r\right)-b p+[q, a]+[b, r]-r a \\
& \rightarrow[b+a, r]-[a, q]-[b, p]=[b+a, p+q]-[a, q]-[b, p]=0 .
\end{aligned}
$$

The seventh composition gives a new element:

$$
\begin{aligned}
b^{2} \cdot a \cdot a^{2}: & \Lambda a^{2}+r a^{2}+b^{2} p \rightarrow b a b a^{2}+\underline{a b^{2} a^{2}}+\underline{a^{2} b a^{2}}+b a p+a b p+r a^{2}+b^{2} p \\
& =b a b a^{2}+a\left(b^{2} a+a b a\right) a+\{b p, a\}+r a^{2}+b^{2} p \\
& \rightarrow b a b a^{2}-a b a b a-a b p-a^{2} b^{2} a-p b a-a r a+\{b p, a\}+r a^{2}+b^{2} p \\
& \rightarrow b a b a^{2}-a b a b a+a^{2}(\Lambda+r)-a r a+[b a, p]+r a^{2}+b^{2} p \\
& \rightarrow b a b a^{2}-a b a b a+a^{2} b a b+a^{2} b a^{2} \\
& +p b^{2}+p b a+p a b+a^{2} r-a r a+[b a, p]+r a^{2}+b^{2} p \\
& =b a b a^{2}-a b a b a+a^{2} b a b+a^{2} b a^{2}+\left\{b^{2}, p\right\}+\{b, a p\}+\left\{a^{2}, r\right\}-a r a .
\end{aligned}
$$

We introduce notations $\Sigma=\left\{a^{2}, r\right\}-a r a$ and $\Omega=\left\{b^{2}, p\right\}+\{b, a p\}$ and add the element

$$
b a b a^{2}-a b a b a+a^{2} b a b+a^{2} b a^{2}+\Omega+\Sigma
$$

to the set G.
So we obtain new compositions: $b \cdot b a \cdot b a^{2}, b^{2} \cdot b a \cdot b a^{2}, b a b \cdot a^{2} \cdot a$ and $b a b a \cdot a \cdot a^{2}$. Again the first composition is a sub-word of the second and the third composition is a sub-word of the forth. And we need to calculate only first and third ones.

To calculate the first composition we use that

$$
\Omega=\left\{b^{2}, p\right\}+\{b, a p\}=\alpha_{1}\left(\left\{b^{2}, a\right\}+\left\{b, a^{2}\right\}\right)+2 \alpha_{0}\left(b^{2}+b a+a b\right)
$$

$$
\rightarrow-\alpha_{1}(b a b+a b a+r)+\alpha_{0}\left(2 b^{2}+b a+a b\right) .
$$

Thus we have

$$
\begin{aligned}
b a b \cdot a^{2} \cdot a: & -\underline{a b a b a^{2}}+\underline{a^{2} b a b a}+a^{2} b p+\Omega a+\Sigma a+b a b p \\
& =-a\left(b a b a^{2}-a b a b a\right)+a^{2} b p+\Omega a+\Sigma a+b a b p \\
& \rightarrow a\left(a^{2} b a b+a^{2} b a^{2}+\Omega+\Sigma\right)+a^{2} b p+\Omega a+\Sigma a+b a b p \\
& \rightarrow p b a^{2}+p b a b+a^{2} b p+b a b p+\{\Omega, a\}+\{\Sigma, a\} \\
& =\alpha_{1}\left(a b a^{2}+a b a b+a^{2} b a+b a b a-\{b a b+a b a+r, a\}\right) \\
& +\alpha_{0}\left(b a^{2}+2 b a b+a^{2} b+\left\{2 b^{2}+b a+a b, a\right\}\right)+\left\{a^{2} r+r a^{2}-a r a, a\right\} \\
& \rightarrow-\alpha_{1}\{r, a\}-2 \alpha_{0}\left(b^{2} a+\Lambda\right)+a^{2} r a+r p-a r a^{2}+p r+a r a^{2}-a^{2} r a \\
& \rightarrow-\alpha_{1}\{r, a\}-2 \alpha_{0} r+\{r, p\}=0 .
\end{aligned}
$$

The third composition also does not give a new element into the set G :

$$
\begin{aligned}
b \cdot b a \cdot b a^{2}: & \left(\underline{\underline{b a b}}+\underline{\underline{b a^{2}}}+a b^{2}+a b a+a^{2} b+r\right) b a^{2}-b\left(-\underline{\underline{a b a b a}}+\underline{a^{2} b a b}+\underline{a^{2} b a^{2}}+\Omega+\Sigma\right) \\
& =b a\left(b^{2} a+b a b+a b^{2}+a b a+a^{2} b\right) a+a b a b a^{2}+a^{2} b^{2} a^{2} \\
& -b a^{2}\left(b^{2} a+b a b+b a^{2}+a b a\right)+\left(a q a^{2}+r b a^{2}-b \Omega-b \Sigma\right) \\
& \rightarrow-b a\left(\underline{\left.\underline{b a^{2}}+r\right) a+\underline{a b a b a^{2}}+a^{2} b^{2} a^{2}+b a^{2}\left(a b^{2}+a^{2} b+r\right)}\right. \\
& +\left(a q a^{2}+r b a^{2}-b \Omega-b \Sigma\right) \\
& \rightarrow-\left(b a b a^{2}-a b a b a\right) a+a^{2} b^{2} a^{2} \\
& +\left(a q a^{2}+r b a^{2}-b \Omega-b \Sigma-b a r a+b p b^{2}+b p a b+b a^{2} r\right) \\
& \rightarrow\left(\underline{\underline{a^{2} b a b}}+\underline{\left.\underline{a^{2} b a^{2}}+\Omega+\Sigma\right) a+a^{2} b^{2} a^{2}}\right. \\
& +\left(a q a^{2}+r b a^{2}-b \Omega-b \Sigma-b a r a+b p b^{2}+b p a b+b a^{2} r\right) \\
& =a^{2}\left(b^{2} a+b a b+b a^{2}\right) a \\
& +\left(a q a^{2}+r b a^{2}-b \Omega-b \Sigma-b a r a+b p b^{2}+b p a b+b a^{2} r+\Omega a+\Sigma a\right) \\
& \rightarrow-a^{2}\left(a b^{2}+a b a+a^{2} b+r\right) a \\
& +\left(a q a^{2}+r b a^{2}-b \Omega-b \Sigma-b a r a+b p b^{2}+b p a b+b a^{2} r+\Omega a+\Sigma a\right) \\
& \rightarrow-p\left(b^{2} a+b a^{2}+a b a\right) a \\
& +\left(a q a^{2}+r b a^{2}-b \Omega-b \Sigma-b a r a+b p b^{2}+b p a b+b a^{2} r+\Omega a+\Sigma a-a^{2} r a\right) \\
& \rightarrow a q a^{2}+r b a^{2}-\underline{b \Omega}-\underline{b \Sigma-b a r a+b p b^{2}+b p a b+b a^{2} r+\underline{\Omega a}+\underline{\Sigma a}-a^{2} r a} \\
& +p b a b+p a b^{2}+p a^{2} b+p r \\
& =a q a^{2}+r b a^{2}-b a r a+b p b^{2}+b p a b+b a^{2} r-a^{2} r a+\underline{p b a b}+\underline{\underline{p a b^{2}}}+\underline{\underline{p a^{2} b}}+\underline{\underline{p r}} \\
& +\left(b^{2} p a+p b^{2} a+b a p a+\underline{\left.\underline{a p b a}-q p-b p b^{2}-b^{2} a p-b a p b\right)}\right. \\
& +\left(a^{2} r a+r p-a r a^{2}-b a^{2} r-b r a^{2}+b a r a\right) \\
& =p\left(b^{2} a+b a b+a b^{2}+a b a+a^{2} b+r\right) \\
& +a q a^{2}+r b a^{2}+b a p a-q p+r p-a r a^{2}-b r a^{2} \\
& \rightarrow-p b a^{2}+a q a^{2}+r b a^{2}+b a p a-q p+r p-a r a^{2}-b r a^{2} \\
& =([b, p]+[a, q]+[r, b]) a^{2}+q a^{3}-q p+r p-a r a^{2} \\
& \rightarrow([s, b]+[s, a]-[q, a]-[s, a]) a^{2}-a r a^{2}+r p=-([r, a]+a r) a^{2}+r p \rightarrow 0 .
\end{aligned}
$$

Then by the Diamond Lemma the main words of the Gröbner bases G are $b^{3}, a^{3}, b^{2} a, b a b a^{2}$, so they are disallowed and the theorem is proved.

Corollary 2. Algebras A are infinite-dimensional and have the quadratic growth.

Acknowledgements

We are grateful to Prof. Yu.S. Samol̆lenko who inspired our investigations.
[1] Pirs R., Associative algebras, Moscow, Mir, 1986.
[2] Ostrovskyı̆ V.L. and Samoĭlenko Yu.S., Introduction to the theory of representations of finitely presented *-algebras. I. Representations by bounded operators, Rev Math. \& Math. Phys., 1999, V.11, 1-261.
[3] Rabanovich V. and Samoı̆lenko Yu.S., On representation of F_{n}-algebras and invertibility symbols, Operator Theory Adv. Appl., 2000, V.118, 347-357.
[4] Rabanovich V.I., Samoı̆lenko Yu.S. and Strelets A.V., About identities in algebras generated by linear connected idempotents, Ukrain. Math. J., 2004, to appear.
[5] Rabanovich V.I., Samǒ̆lenko Yu.S. and Strelets A.V., About identities in algebras $\mathbf{Q}_{n, \lambda}$ generated by idempotents, Ukrain. Math. J., 2001, V.53, N 10, 1380-1390.
[6] Strelets A.V., On identities in the algebra generated by three partial reflections sum of which is zero, Methods Funct. Anal. Topology, 2004, to appear.
[7] Ufnarovskiĭ V., Combinatorical and asimptotic methods in algebra, Current Problems in Mathematics. Fundamental Directions, Vol. 57, Moscow, VINITI, 1990, 5-177 (in Russian).

