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Among algebras generated by linearly dependent idempotents we look for algebras with
polynomial identities. One of the way to find a polynomial identity in an algebra is to
calculate a linear basis for this algebra, build a “big” family of representations and prove
using the basis that it is a residual family. In the paper was found a linear basis for some
algebra generated by idempotents.

1 Introduction

Algebras generated by linearly dependent idempotents are investigated in the paper. Among
these algebras we look for algebras with polynomial identities, so called PI-algebras (see, for
example, [1]). The theory of PI-algebras is well developed and gives additional information
about algebras. So for applications it is important to determine that an algebra has a polynomial
identity. One of the way to find a polynomial identity in an algebra is to calculate a linear basis
for this algebra, build a “big” family of representations such that the supremum of dimensions of
representations from the family is finite and prove that it is a residual family (see [2, Theorem 2]
or [3]).

Algebras which we are interested in are

Qn,λ = C〈q1, . . . , qn | q2
k = qk,

n∑

k=1

λkqk = e〉,

n ∈ N, λ ∈ C
n, and its factor-algebras Qn,λ/{qilqjl

= qjl
qil = 0}m

l=1 where il �= jl ∈ {1, . . . , n}.
In paper [4] a criterion was given when algebras Qn,λ are PI-algebras (note that the case

λi = 1
λ was studied in the paper [5]). We remind the respective results.

In the case n � 3 all algebras Qn,λ are finite-dimensional and so they are PI-algebras. In

the case n � 4 all algebras Qn,λ are infinite-dimensional. Let δ̂(λ) = 1− 1
2

n∑
j=1

λj . Then we have

the following results.

Theorem 1. If δ̂(λ) �= 0 then the algebra Q4,λ is not a PI-algebra.

Corollary 1. When n � 5 all algebras Qn,λ are not PI-algebras.

Theorem 2. If δ̂(λ) = 0 then the algebra Q4,λ is an F4-algebra, i.e.

∑

σ∈S4

(−1)p(σ)vσ(1)vσ(2)vσ(3)vσ(4) = 0,

for any elements v1, v2, v3, v4 ∈ Qn,λ, where S4 is a symmetric group.
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The Corollary 1 shows that when n � 5 algebras Qn,λ are not PI-algebras. But if we add some
relations, for example, relations of commuting (qiqj = qjqi) or orthogonality (qiqj = 0) for some
generators, then some of obtained factor-algebras are PI-algebras and are infinite-dimensional.

In paper [6] for the algebra

R = C〈p1, p2, p3, q1, q2, q3 | q2
k = qk, p

2
k = pk, pkqk = 0,

3∑

k=1

(pk + 2qk) = 3e〉,

the following results were obtained:

Lemma 1. The algebra R is infinite-dimensional and has the quadratic growth.

Theorem 3. The algebra R is an F6-algebra.

In both cases to prove Theorem 2 and Theorem 3 a residual family for corresponding algebras
was found.

In this paper we will find a linear basis of an algebra

A = C〈a, b | a3 + α1a + α0 = 0, b3 + β1a + β0 = 0, (a + b)3 + γ1(a + b) + γ0 = 0〉,
where αi, βi, γi ∈ C. But first we give some argumentation to solve this problem. Consider
algebras

A′ = C〈p1, p2, p3, q1, q2, q3 | q2
k = qk, p

2
k = pk, pkqk = 0,

3∑

k=1

(µkpk + νkqk) = e〉,

where µk, νk ∈ C, µk �= νk,
3∑

k=1

(µk + νk) = 3 (in the case of µk = 1/3, νk = 2/3 we have the

algebra R). To find an answer the question whether some family of representations is a residual
family we need a linear basis in this algebra or in some algebra which is isomorphic with this
one.

The algebra A′ and an algebra

A′′ = C〈x1, x2, x3 |x1 + x2 + x3 = e, xk(xk − µk)(xk − νk) = 0〉
are isomorphic. A map xk �→ µkpk + νkqk is a corresponding isomorphism. A map xk �→
x′

k + (µk + νk)/3 gives isomorphism between the algebra A′′ and an algebra

A′′′ = C〈x′
1, x

′
2, x

′
3 |x′

1 + x′
2 + x′

3 = 0, fk(xk) = 0〉,
where fk are polynomials such that deg fk = 3 and sum of roots is zero. So this algebra and the
algebra A are isomorphic.

2 A linear basis in the algebra A

We introduce a homogeneous lexicographical order on words in alphabet {a, b}: a < b. Using the
Diamond Lemma (for definitions of the notions Gröbner basis, reductions, compositions, growth
of an algebra etc. see review [7] and references therein) we will prove the following theorem which
describes a linear basis in the algebra A. We will denote reductions by symbol →.

Theorem 4. The set of words
{
aσ1(ba2)n(ba)mbσ2 |σ1, σ2 ∈ {0, 1, 2}, n, m ∈ N ∪ {0}}

is a linear basis of the algebra A.
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Proof. Let us introduce notations

p = −α1a − α0,

q = −β1b − β0,

s = γ1(a + b) + γ0,

r = s + p + q,

Λ = bab + ba2 + ab2 + aba + a2b.

Then (a + b)3 + γ1(a + b) + γ0 → b2a + Λ + r. So we have an ideal I generated by elements
a3 − p, b3 − q, b2a + Λ + r. Let G be the set of this elements. The main words of the set G are
b3, b2a and a3. So we have 7 compositions:

b · b2 · b, b2 · b · b2, b · b2 · a, b2 · b · ba, a · a2 · a, a2 · a · a2 and b · ba · a2.

The first composition is a sub-word of the second, the third is a sub-word of the fourth and the
fifth is a sub-word of the sixth, so by the Triangle Lemma (see for example [7, sec. 2.10]) it is
enough to calculate only the first, the third, the fifth and the seventh compositions. But the
first and the fifth compositions are reduced to 0 because [b, q] = 0 and [a, p] = 0.

By reductions of the third composition we get 0:

b · b2 · a : bΛ + br + qa2 = b2ab + b2a2 + bab2 + baba + ba2b + br + qa

= (b2a + bab + ba2)b + (b2a + bab)a + br + qa

→ −(ab2 + aba + a2b + r)b − (ba2 + ab2 + aba + a2b + r)a + br + qa

→ −a(b2a + bab + ba2 + ab2 + aba) − bp + [q, a] + [b, r] − ra

→ a(a2b + r) − bp + [q, a] + [b, r] − ra

→ [b + a, r] − [a, q] − [b, p] = [b + a, p + q] − [a, q] − [b, p] = 0.

The seventh composition gives a new element:

b2 · a · a2 : Λa2 + ra2 + b2p → baba2 + ab2a2 + a2ba2 + bap + abp + ra2 + b2p

= baba2 + a(b2a + aba)a + {bp, a} + ra2 + b2p

→ baba2 − ababa − abp − a2b2a − pba − ara + {bp, a} + ra2 + b2p

→ baba2 − ababa + a2(Λ + r) − ara + [ba, p] + ra2 + b2p

→ baba2 − ababa + a2bab + a2ba2

+ pb2 + pba + pab + a2r − ara + [ba, p] + ra2 + b2p

= baba2 − ababa + a2bab + a2ba2 + {b2, p} + {b, ap} + {a2, r} − ara.

We introduce notations Σ = {a2, r} − ara and Ω = {b2, p} + {b, ap} and add the element

baba2 − ababa + a2bab + a2ba2 + Ω + Σ

to the set G.
So we obtain new compositions: b · ba · ba2, b2 · ba · ba2, bab · a2 · a and baba · a · a2. Again

the first composition is a sub-word of the second and the third composition is a sub-word of the
forth. And we need to calculate only first and third ones.

To calculate the first composition we use that

Ω = {b2, p} + {b, ap} = α1({b2, a} + {b, a2}) + 2α0(b2 + ba + ab)



1182 V.I. Rabanovich and A.V. Strelets

→ −α1(bab + aba + r) + α0(2b2 + ba + ab).

Thus we have

bab · a2 · a : −ababa2 + a2baba + a2bp + Ωa + Σa + babp

= −a(baba2 − ababa) + a2bp + Ωa + Σa + babp

→ a(a2bab + a2ba2 + Ω + Σ) + a2bp + Ωa + Σa + babp

→ pba2 + pbab + a2bp + babp + {Ω, a} + {Σ, a}
= α1(aba2 + abab + a2ba + baba − {bab + aba + r, a})
+ α0(ba2 + 2bab + a2b + {2b2 + ba + ab, a}) + {a2r + ra2 − ara, a}
→ −α1{r, a} − 2α0(b2a + Λ) + a2ra + rp − ara2 + pr + ara2 − a2ra

→ −α1{r, a} − 2α0r + {r, p} = 0.

The third composition also does not give a new element into the set G:

b · ba · ba2 : (bab + ba2 + ab2 + aba + a2b + r)ba2 − b(−ababa + a2bab + a2ba2 + Ω + Σ)

= ba(b2a + bab + ab2 + aba + a2b)a + ababa2 + a2b2a2

− ba2(b2a + bab + ba2 + aba) + (aqa2 + rba2 − bΩ − bΣ)

→ −ba(ba2 + r)a + ababa2 + a2b2a2 + ba2(ab2 + a2b + r)

+ (aqa2 + rba2 − bΩ − bΣ)

→ −(baba2 − ababa)a + a2b2a2

+ (aqa2 + rba2 − bΩ − bΣ − bara + bpb2 + bpab + ba2r)

→ (a2bab + a2ba2 + Ω + Σ)a + a2b2a2

+ (aqa2 + rba2 − bΩ − bΣ − bara + bpb2 + bpab + ba2r)

= a2(b2a + bab + ba2)a

+ (aqa2 + rba2 − bΩ − bΣ − bara + bpb2 + bpab + ba2r + Ωa + Σa)

→ −a2(ab2 + aba + a2b + r)a

+ (aqa2 + rba2 − bΩ − bΣ − bara + bpb2 + bpab + ba2r + Ωa + Σa)

→ −p(b2a + ba2 + aba)a

+ (aqa2 + rba2 − bΩ − bΣ − bara + bpb2 + bpab + ba2r + Ωa + Σa − a2ra)

→ aqa2 + rba2 − bΩ − bΣ − bara + bpb2 + bpab + ba2r + Ωa + Σa − a2ra

+ pbab + pab2 + pa2b + pr

= aqa2 + rba2 − bara + bpb2 + bpab + ba2r − a2ra + pbab + pab2 + pa2b + pr

+ (b2pa + pb2a + bapa + apba − qp − bpb2 − b2ap − bapb)

+ (a2ra + rp − ara2 − ba2r − bra2 + bara)

= p(b2a + bab + ab2 + aba + a2b + r)

+ aqa2 + rba2 + bapa − qp + rp − ara2 − bra2

→ −pba2 + aqa2 + rba2 + bapa − qp + rp − ara2 − bra2

= ([b, p] + [a, q] + [r, b])a2 + qa3 − qp + rp − ara2

→ ([s, b] + [s, a] − [q, a] − [s, a])a2 − ara2 + rp = −([r, a] + ar)a2 + rp → 0.

Then by the Diamond Lemma the main words of the Gröbner bases G are b3, a3, b2a, baba2,
so they are disallowed and the theorem is proved. �
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Corollary 2. Algebras A are infinite-dimensional and have the quadratic growth.

Acknowledgements
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