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Among algebras generated by linearly dependent idempotents we look for algebras with
polynomial identities. One of the way to find a polynomial identity in an algebra is to
calculate a linear basis for this algebra, build a “big” family of representations and prove
using the basis that it is a residual family. In the paper was found a linear basis for some
algebra generated by idempotents.

1 Introduction

Algebras generated by linearly dependent idempotents are investigated in the paper. Among
these algebras we look for algebras with polynomial identities, so called PI-algebras (see, for
example, [1]). The theory of PI-algebras is well developed and gives additional information
about algebras. So for applications it is important to determine that an algebra has a polynomial
identity. One of the way to find a polynomial identity in an algebra is to calculate a linear basis
for this algebra, build a “big” family of representations such that the supremum of dimensions of
representations from the family is finite and prove that it is a residual family (see [2, Theorem 2]
or [3]).
Algebras which we are interested in are

n
Q,x=Clar, - an |Gt = ar, D Mear =€),
k=1

n €N, A € C", and its factor-algebras Q, /19,95, = ¢4, = 0}]", where iy # j; € {1,...,n}.
In paper [4] a criterion was given when algebras Qn,X are PI-algebras (note that the case
Ai = } was studied in the paper [5]). We remind the respective results.
In the case n < 3 all algebras Qn,X are finite-dimensional and so they are PI-algebras. In

~ n
the case n > 4 all algebras Q,, y are infinite-dimensional. Let §(\) =1 — % >~ Aj. Then we have
7 j:1

the following results.
Theorem 1. If S(X) # 0 then the algebra Q, ~ is not a PI-algebra.

Corollary 1. When n > 5 all algebras Q,, 5 are not PI-algebras.

Theorem 2. If §(X) = 0 then the algebra Q, x is an Fy-algebra, i.e.

> (=P 0,1y 05(2) Vo (3) Vo(a) = 0,

oESy

for any elements vi,v2,v3,v4 € Q, 5, where Sy is a symmetric group.
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The Corollary 1 shows that when n > 5 algebras Qn 5 are not Pl-algebras. But if we add some
relations, for example, relations of commuting (¢;q; = q]qz) or orthogonality (g;q; = 0) for some
generators, then some of obtained factor-algebras are PI-algebras and are infinite-dimensional.

In paper [6] for the algebra

w

R = Clp1,p2,p3, 41, 42,43 | G = Q> Dk = P> Dk = 0, > (Pk + 2qx) = 3e),
k=1

the following results were obtained:
Lemma 1. The algebra R is infinite-dimensional and has the quadratic growth.
Theorem 3. The algebra R is an Fg-algebra.

In both cases to prove Theorem 2 and Theorem 3 a residual family for corresponding algebras
was found.
In this paper we will find a linear basis of an algebra

A =Cla,b|a® +aja+ag=0, 0>+ pra+ By =0, (a+b)?>+y1(a+b)+7 =0),

where oy, 5;,7; € C. But first we give some argumentation to solve this problem. Consider
algebras

3
A" =Clp1,p2,p3, 01, 42,43 | G = Qs D = Ph PR = 0, > (1kPk + Vi) = €),
k=1

3
where pg,vp € C, ux # vk, Y (ux + k) = 3 (in the case of ux = 1/3, v = 2/3 we have the
k=1
algebra R). To find an answer the question whether some family of representations is a residual
family we need a linear basis in this algebra or in some algebra which is isomorphic with this
one.

The algebra A’ and an algebra
A = Clz1, 29, 23|21 + 22 + 23 = €, xp(x) — pe)(xf — ) =0)

are isomorphic. A map xp — puppr + Viqr i a corresponding isomorphism. A map xzp +—
@) + (1k + vi)/3 gives isomorphism between the algebra A” and an algebra

A" = Cxh, oy, | 2] + by + 2 = 0, fr(x) =0),

where fj, are polynomials such that deg fr = 3 and sum of roots is zero. So this algebra and the
algebra A are isomorphic.

2 A linear basis in the algebra A

We introduce a homogeneous lexicographical order on words in alphabet {a, b}: a < b. Using the
Diamond Lemma (for definitions of the notions Grébner basis, reductions, compositions, growth
of an algebra etc. see review [7] and references therein) we will prove the following theorem which
describes a linear basis in the algebra A. We will denote reductions by symbol —.

Theorem 4. The set of words
{a7t (ba?)™ (ba)™b7* |01, 09 € {0,1,2},n,m € NU {0}}

s a linear basis of the algebra A.
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Proof. Let us introduce notations

p = —aia — oo,

q = —51b— Do,

s =1(a+b) + o,
r=s+p+aq,

A = bab + ba® + ab® + aba + a?b.

Then (a + b)® + v1(a + b) +70 — b*a + A+ r. So we have an ideal I generated by elements
a® —p, b3 —q, b>a+ A+ 1. Let G be the set of this elements. The main words of the set G are
b3, b%a and a3. So we have 7 compositions:

b-b2b, b2 b2 b-b%a, b® - b-ba, a-a®-a,a’ a-a®and b-ba - a’.

The first composition is a sub-word of the second, the third is a sub-word of the fourth and the
fifth is a sub-word of the sixth, so by the Triangle Lemma (see for example [7, sec. 2.10]) it is
enough to calculate only the first, the third, the fifth and the seventh compositions. But the
first and the fifth compositions are reduced to 0 because [b, ¢] = 0 and [a, p] = 0.

By reductions of the third composition we get 0:

b-b?-a: bA+br+ ga® = b%ab + b*a® + bab® + baba + ba’b + br + qa
= (b%a + bab + ba®)b + (b*a + bab)a + br + qa
— —(ab® 4 aba + a®b + )b — (ba® + ab® + aba + a®b + r)a + br + qa
— —a(b%a + bab + ba® + ab® + aba) — bp + [q,a] + [b,r] — ra
— a(a®b+7) —bp+ [g,a] + [b,7] —ra
— [b+a,r] —la,q] —[b,p] = [b+a,p+q] —a,q] = [b,p] = 0.

The seventh composition gives a new element:

2. Ad? + ra® + b%p — baba® + ab®a® + a®ba® + bap + abp + ra® + b*p

= baba® + a(b’a + aba)a + {bp,a} + ra® + b’p

— baba® — ababa — abp — a*b*a — pba — ara + {bp, a} + ra* + b*p
— baba® — ababa + a*(A + 1) — ara + [ba, p] + ra® + b*p

— baba® — ababa + a*bab + a*ba’

+ pb® + pba + pab + a*r — ara + [ba, p] + ra® + b*p

= baba® — ababa + a*bab + a*ba* + {b*, p} + {b,ap} + {a*, 7} — ara.

V.a-a

We introduce notations ¥ = {a?,7} — ara and Q = {b?,p} + {b, ap} and add the element
baba? — ababa + a*bab + a*ba® + Q + %

to the set G.

So we obtain new compositions: b - ba - ba?, b - ba - ba?, bab - a® - a and baba - a - a®>. Again
the first composition is a sub-word of the second and the third composition is a sub-word of the
forth. And we need to calculate only first and third ones.

To calculate the first composition we use that

Q= {t%,p} + {b,ap} = a1 ({b?, a} + {b,a*}) + 20 (b* + ba + ab)
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— —ay(bab + aba + 1) + ag(2b* 4 ba + ab).
Thus we have
bab - a® - a: —ababa® + a*baba + a*bp + Qa + La + babp
= —a(baba® — ababa) + a*bp + Qa + La + babp
— a(a®bab + a*ba® + Q + X) 4 abp + Qa + Xa + babp
— pba® + pbab + a®bp + babp + {Q, a} + {T, a}
= ay(aba® + abab 4 a®ba + baba — {bab + aba + ,a})
+ ag(ba® 4 2bab + a®b + {2b® + ba + ab, a}) + {a*r + ra® — ara, a}
— —ap{r,a} — 2ap(b*a + A) + a*ra + rp — ara® + pr + ara® — a*ra
— —ag{r,a} — 2a9r + {r,p} = 0.

The third composition also does not give a new element into the set G:

b-ba-ba®: (bab+ ba® + ab® + aba + a®b + r)ba® — b(—ababa + a*bab + a*ba® + Q + X)
= ba(b*a + bab + ab® + aba + a*b)a + ababa® 4 a*b*a®
— ba®(b*a + bab + ba® + aba) + (aga® + rba* — bQ — bY)
— —ba(@ +7r)a+ M + a*v?a® + ba®(ab® + a*b + 1)
+ (aga® + rba® — b2 — bY)
— —(baba® — ababa)a + a*b*a?
+ (aga® + rba® — bQ — bY — bara + bpb* + bpab + ba*r)
— (a’bab + a’ba® + Q + D)a + a’b*a’
+ (aga® 4 rba® — b — b — bara + bpb® + bpab + ba’r)
= a?(b%a + bab + ba*)a
+ (aga® + rba® — bQ — bY — bara + bpb® + bpab + ba*r + Qa + La)
— —a*(ab® + aba + a*b + 1)a
+ (aga® + rba® — bQ — bY — bara + bpb® + bpab + ba*r + Qa + Ya)
— —p(b*a + ba® + aba)a
+ (aga® + rba® — bQ — bY — bara + bpb* + bpab + ba*r + Qa + La — a’*ra)
— aqa® + rba® — b — b¥ — bara + bpb? + bpab + ba’r + Qa + Xa — a*ra
+ pbab + pab® + pa®b + pr
= aga’® + rba® — bara + bpb® + bpab + ba’*r — a*ra + pbab + pab® + pa®b + pr

+ (b*pa + ]L%L + bapa + apba — qp — bpb* — bap — bapb)
+ (a*ra + rp — ara® — ba*r — bra® + bara)

= p(b%a + bab + ab® + aba + a®b + 1)

+ aga® + rba® + bapa — qp + rp — ara® — bra®

— —pba® + aga® + rba® + bapa — qp + rp — ara® — bra*
= ([b,p] + la, ] + [r,0))a® + qa® — qp + rp — ara®

— ([5,b] + [s,a] — [q,a] — [s,a])a® — ara® 4+ rp = —([r,a] + ar)a® + rp — 0.

Then by the Diamond Lemma the main words of the Grobner bases G are b3, a3, b%a, baba?,
so they are disallowed and the theorem is proved. |
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Corollary 2. Algebras A are infinite-dimensional and have the quadratic growth.
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