
Proceedings of Institute of Mathematics of NAS of Ukraine 2004, Vol. 50, Part 1, 142–148
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In the spirit of the recent work of Ibragimov [1] who adopted the infinitesimal method for
calculating invariants of families of differential equations using the equivalence groups, we
apply the method to evolution type equations of the form ut = f(x, u)uxx + g(x, u, ux).
We show that the equivalence Lie algebra admitted by this equation has two functionally
independent differential invariants of the second order.

1 Introduction

We consider evolution equations of the form

ut = f(x, u)uxx + g(x, u, ux). (1)

A number of many special cases in this class of equations have been successfully used to model
physical problems. Such example is the nonlinear diffusion equation ut = [D(u)ux]x. Group
properties of this equation were studied by Ovsiannikov [2]. Other examples of such equations
that appear in the literature are ut = [g(x)D(u)ux]x, ut = [g(x)D(u)ux]x − K(u)ux, ut =
(un)xx + g(x)um + f(x)usux, etc.

It can be shown that equations (1) admit equivalence transformation

x′ = P (x), t′ = c1t+ c2, u′ = R(x, u) (2)

with

f ′ =
P 2
xf

c1
, g′ =

PxRug + (PxxRuux + PxxRx − 2PxRuxux − PxRuuu
2
x − PxRxx)f

c1Px
.

If we set P (x) = x+ εφ(x) and R(x, u) = u+ εψ(x, u), we can write the above transformations
in infinitesimal form. That is, in the form

Y = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂u
+ ζ

∂

∂ux
+ µ

∂

∂f
+ ν

∂

∂g
, (3)

where ξ1, ξ2 and η depend on t, x and u, while µ and ν depend on t, x, u, ux, f and g, and
ζ is given by ζ = Dx(η) − utDx(ξ1) − uxDx(ξ2). The operator Dx is the total derivative with
respect to x.

We deduce that the class of equations (1) has an infinite continuous group of equivalence
transformations generated by the infinite-dimensional Lie algebra which is spanned by the ope-



Invariants for Evolution Equations 143

rators:

Y1 =
∂

∂t
, Y2 = t

∂

∂t
− f

∂

∂f
− g

∂

∂g
,

Yφ = φ(x)
∂

∂x
− φ′ux

∂

∂ux
+ 2φ′f

∂

∂f
+ φ′′fux

∂

∂g
,

Yψ = ψ(x, u)
∂

∂u
+ (ψx + ψuux)

∂

∂ux
+

[
ψug − (ψuuu2

x + 2ψxuux + ψxx)f
] ∂

∂g
. (4)

In this paper we calculate differential invariants of equivalence transformations of equa-
tions (1) by using the infinitesimal method for calculations of invariants of families of equations
developed in [3]. In the following three sections we consider the problem of classifying differential
invariants of equations (1) of zero, first and second order.

2 Differential invariants of order zero

We search for invariants of order zero. That is, invariants of the form

J = J(t, x, u, ux, f, g).

We apply the invariant test Y (J) = 0 to the operators Y1, Y2, Yφ and Yψ and using the fact
that φ(x) and ψ(x, u) are arbitrary functions, we obtain J = const. Hence, equations (1) do not
admit differential invariants of order zero.

3 Differential invariants of first order

In order to determine differential invariants of the first order,

J = J(t, x, u, ux, f, g, fx, fu, gx, gu, gux)

we need to consider the first prolongation of Y ,

Y (1) = Y + µx
∂

∂fx
+ µu

∂

∂fu
+ νx

∂

∂gx
+ νu

∂

∂gu
+ νux

∂

∂gux

,

where

µk = D̃k(µ) − fxD̃k(ξ2) − fuD̃k(η), k = x, u,

νk = D̃k(ν) − gxD̃k(ξ2) − guD̃k(η) − guxD̃k(ζ), k = x, u, ux, (5)

where D̃x, D̃u and D̃ux denote the total derivatives with respect to x, u and ux:

D̃x =
∂

∂x
+ fx

∂

∂f
+ gx

∂

∂g
+ fxx

∂

∂fx
+ fxu

∂

∂fu
+ gxx

∂

∂gx
+ gxu

∂

∂gu
+ gxux

∂

∂gux

+ · · · ,

D̃u =
∂

∂u
+ fu

∂

∂f
+ gu

∂

∂g
+ fxu

∂

∂fx
+ fuu

∂

∂fu
+ gxu

∂

∂gx
+ guu

∂

∂gu
+ guux

∂

∂gux

+ · · · ,

D̃ux =
∂

∂ux
+ fux

∂

∂f
+ gux

∂

∂g
+ fxux

∂

∂fx
+ fuux

∂

∂fu

+ gxux

∂

∂gx
+ guux

∂

∂gu
+ guxux

∂

∂gux

+ · · · . (6)
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Using the formulae (5) and (6) we obtain the first extension of the generators Y1, Y2, Yφ, Yψ
given by equations (4):

Y
(1)
1 = Y1, Y

(1)
2 = Y2 − fx

∂

∂fx
− fu

∂

∂fu
− gx

∂

∂gx
− gu

∂

∂gu
− gux

∂

∂gux

,

Y
(1)
φ = Yφ + (2φ′′f + φ′fx)

∂

∂fx
+ 2φ′fu

∂

∂fu

+ (uxφ′′′f + uxφ
′′fx − gxφ

′ + φ′′uxgux)
∂

∂gx
+ uxφ

′′fu
∂

∂gu
+ (φ′′f + φ′gux)

∂

∂gux

,

Y
(1)
ψ = Yψ − fuψx

∂

∂fx
− fuψu

∂

∂fu
+ [ψxu − (ψxuuu2

x + 2ψxxuux + ψxxx)f

− (ψuuu2
x + 2ψxuux + ψxx)fx + ψugx − ψxgu − (ψxx + ψxuux)gux ]

∂

∂gx

+ [ψuug − (ψuuuu2
x + 2ψxuuux + ψxxu) − (ψuuu2

x + 2ψxuux + ψxx)fu

− (ψuuux + ψxu)gux ]
∂

∂gu
− 2(ψuuux + ψxu)f

∂

∂gux

. (7)

We note that Y (n)
1 = Y1. Hence for any order of differential invariants Jt = 0.

Now from the differential invariant test Y (1)(J) = 0, we get three identities

E2 = Y
(1)
2 (J) = 0, Eφ = Y

(1)
φ (J) = 0, Eψ = Y

(1)
ψ (J) = 0. (8)

Since φ(x) and ψ(x, u) are arbitrary functions, coefficients of φ in Eφ = 0 and ψ in Eψ = 0 give
Jx = Ju = 0. Now coefficients of ψuuu, ψxuu, ψuu and ψxu give Jgu = Jgx = Jg = Jgux

= 0.
Coefficient of φ′′ in Eφ = 0 gives Jfx = 0 and coefficient of ψx in Eψ = 0 gives Jux = 0. Hence,
J = J(f, fu) and equations (8) read

E1 = −
(
f
∂J

∂f
+ fu

∂J

∂fu

)
= 0, Eφ = 2

(
f
∂J

∂f
+ fu

∂J

∂fu

)
φ′ = 0, Eψ = fu

∂J

∂fu
ψu = 0.

If fu �= 0 from the above relations we deduce that Jfu = Jf = 0 and therefore equations (1) do
not admit differential invariant of the first order. However the equation

fu = 0 (9)

is invariant under the group which is spanned by (7). That is,

Y
(1)
1 (fu)|fu=0 = 0, Y

(1)
2 (fu)|fu=0 = 0, Y

(1)
φ (fu)|fu=0 = 0, Y

(1)
ψ (fu)|fu=0 = 0.

4 Differential invariants of second order

Now we determine differential invariants that depend on the second derivatives of f and g. Here
we need to calculate the second prolongation of (4). As in the previous case it is straightforward
to deduce that Jt = Jx = Ju = 0. Hence,

J = J(ux, f, g, fx, fu, gx, gu, gux , fxx, fxu, fuu, gxx, gxu, gxux , guu, guux , guxux).
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Now the second prolongation of (4) reads

Y
(2)
2 = Y

(1)
2 − fxx

∂

∂fxx
− fxu

∂

∂fxu
− fuu

∂

∂fuu
− gxx

∂

∂gxx
− gxu

∂

∂gxu
− gxux

∂

∂gxux

− guu
∂

∂guu
− guux

∂

∂guux

− guxux

∂

∂guxux

,

Y
(2)
φ = Y

(1)
φ + (2φ′′′f + 3φ′′fx)

∂

∂fxx
+ (2φ′′fu + φ′fxu)

∂

∂fxu
+ 2φ′fuu

∂

∂fuu

+ (uxφ(iv)f + · · · ) ∂

∂gxx
+ (uxφ′′′fu + · · · ) ∂

∂gxu

+ (φ′′′f + φ′′gux + φ′′fx + uxφ
′′guxux)

∂

∂gxux

+ uxφ
′′fuu

∂

∂guu

+ (φ′′fu + φ′guux)
∂

∂guux

+ 2φ′guxux

∂

∂guxux

,

Y
(2)
ψ = Y

(1)
ψ − (ψxufu + 2ψxfxu)

∂

∂fxx
− (ψxufu + ψufxu + ψxfuu)

∂

∂fxu

− (fuψuu + 2fuuψu)
∂

∂fuu
+ (−ψxxxxf + · · · ) ∂

∂gxx
+ (−ψxxxuf + · · · ) ∂

∂gxu

+ (−ψuuuufu2
x + · · · ) ∂

∂guu
− [2ψxuuuxf + 2ψxxuf + 2ψuufxux + 2ψxufx + ψxguux

+ (ψxx + ψxuux)guxux ]
∂

∂gxux

− [2ψuuuuxf + 2ψxuuf + 2ψuufuux + 2ψxufu

+ ψuguux + (ψxu + ψuuux)guxux ]
∂

∂guux

− (2ψuuf + ψuguxux)
∂

∂guxux

. (10)

The invariant test produces three identities

E2 = Y
(2)
2 (J) = 0, Eφ = Y

(2)
φ (J) = 0, Eψ = Y

(2)
ψ (J) = 0. (11)

Coefficients of ψxxxx, ψxxxu, ψuuuu and ψxxx in Eψ = 0 give Jgxx = Jgxu = Jguu = Jgx = 0.
Hence,

J = J(ux, f, g, fx, fu, gu, gux , fxx, fxu, fuu, gxux , guux , guxux).

Equation E2 = 0 now reads

fJf + gJg + fxJfx + fuJfu + guJgu + guxJgux
+ fxxJfxx + fxuJfxu + fuuJfuu

+ gxuxJgxux
+ guuxJguux

+ guxuxJguxux
= 0.

From this first order partial differential equation we get 12 integrals

p1 =
f

g
, p2 =

fx
f
, p3 =

fu
f
, p4 =

gu
g
, p5 =

gux

g
, p6 =

fxx
f
,

p7 =
fxu
f
, p8 =

fuu
f
, p9 =

gxux

g
, p10 =

guux

g
, p11 =

guxux

g
, p12 = ux. (12)

Coefficient of ψxxu in Eψ = 0 gives

Jp4 + 2Jp9 = 0,

where we have used the new variables pi. The above relation reduces the integrals by one:

p1, p2, p3, p5, p6, p7, p8, p10, p11, p12, q4 = 2p4 − p9. (13)
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From the coefficient of ψxuu in Eψ = 0 we get

Jp10 + p12Jq4 = 0

and therefore we have the following 10 integrals

p1, p2, p3, p5, p6, p7, p8, p11, p12, r4 = q4 − p12p10. (14)

Coefficient of ψx in Eψ = 0 gives

Jp12 − p3Jp2 − 2p7Jp6 − p8Jp7 = 0

which produces the integrals

p1, p3, p5, p8, p11, r4, q2 = p2 + p3p12, q6 = p2
7 − p6p8, q7 = p7 + p8p12. (15)

Coefficient of ψxx in Eψ = 0 produces

p2
1Jp1 + p1p11Jp11 + p1p5Jp5 + p3p8Jq6 + (p11 + p1r4 − 2p1p3)Jr4 = 0

which implies the integrals

p3, p8, q2, q7, q5 =
p5

p1
, q11 =

p11

p1
, r6 = q6 +

p3p8

p1
, µ4 =

r4
p1

+
p11

p2
1

− 2
p3

p1
. (16)

We take the coefficient of ψxu in Eψ = 0,

2Jq5 + p3Jq7 + 2p3q7Jr6 + 2(q5 − q2)Jµ4 = 0.

We obtain the integrals

p3, p8, q2, q11, r5 = q25 − 2q2q5 − 2µ4, r7 = 2q7 − p3q5, µ6 = q27 − r6. (17)

Coefficient of ψuu in Eψ = 0 gives

p3µ6Jµ6 + 2p8Jq11 + p3p8Jp8 = 0

which produces the integrals

p3, q2, r5, r7, r11 = p3q11 − 2p8, λ6 =
µ6

p8
. (18)

Coefficient of ψu in Eψ = 0 gives the equation

p3Jp3 + 2r11Jr11 + r7Jr7 = 0

from which we get the solutions

q2, r5, λ6, µ7 =
r7
p3
, µ11 =

r11

p2
3

. (19)

Solutions (19) satisfy Eψ = 0 for any arbitrary function ψ(x, u). Now we use the identity
Eφ = 0. Coefficient of φ′′′ gives

Jr5 + Jλ6 = 0

and therefore we have

q2, µ7, µ11, µ5 = r5 − λ6. (20)
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Coefficient of φ′′ in Eφ = 0 produces the equation

2Jq2 + 3Jµ7 − 3q2Jµ5 = 0

which gives the integrals

µ11, λ7 = 2µ7 − 3q2, λ5 = 4µ5 + 3q22. (21)

Finally equation Eφ = 0 reads

(2λ5Jλ5 + λ7Jλ7)φ
′ = 0.

Hence we obtain the solutions

J1 = µ11, J2 =
λ5

λ2
7

. (22)

Now, using the sequence of integrals (12)–(22), we can write the forms of J1 and J2 in terms
of the original variables, ux, f , g, fx, fu, gu, gux , fxx, fxu, fuu, gxux , guux , guxux . We therefore
conclude that equation (1) has two invariants of the second order:

J1 =
fuguxux − 2ffuu

f2
u

, (23)

J2 = f2
u(−4u2

xffuu − 8uxffxu − 4ffxx − 16fgu
+ 8uxfguux + 8fgxux + 3u2

xf
2
u + 6uxfxfu + 20gfu − 8uxfugux + 3f2

x − 8fxgux

− 8gguxux + 4g2
ux

)/(4uxffuu + 4ffxu − 3uxf2
u − 3fxfu − 2fugux)2. (24)

In addition to the invariant equation fu = 0 (equation (9)) that we found in the previous
section, here we have also the following three invariant equations:

fuguxux − 2ffuu = 0, (25)

−4u2
xffuu − 8uxffxu − 4ffxx − 16fgu + 8uxfguux + 8fgxux + 3u2

xf
2
u

+ 6uxfxfu + 20gfu − 8uxfugux + 3f2
x − 8fxgux − 8gguxux + 4g2

ux
= 0, (26)

4uxffuu + 4ffxu − 3uxf2
u − 3fxfu − 2fugux = 0. (27)

To show this we need to apply the second prolongation (10) of (4) to these equations. That is,
we have to show that

Y
(2)
2 (φ)|φ=0 = 0, Y

(2)
φ (φ)|φ=0 = 0, Y

(2)
ψ (φ)|φ=0 = 0,

where φ is the left hand side of equations (25), (26) and (27).
We make the following remarks: If equation (1) is such that

1. All four equations (9), (25)–(27) hold, then it has no invariants. We note that if (9) holds,
then equations (25) and (27) are satisfied.

2. Equation (9) holds, then it has one invariant, J2 = 0.

3. Equations (26) and (27) hold, then it has one invariant, J1.

4. Equation (25) holds (but not (9)), then it has two invariants, J1 = 0, J2.

5. Equation (26) holds, then it has two invariants, J1, J2 = 0.

6. Equation (27) holds, then it has two invariants, J1, J ′
2 = 1

J2
= 0.
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Finally, we make a comment on the invariant equation fu = 0. From this relation we deduce
that when two equations of the form (1) are connected by a point transformation, the corre-
sponding functions f(x, u) must both depend on u, or both do not depend on u. From this we
can deduce that there exists no point transformation that maps an equation of the form (1)
with fu �= 0 to the linear heat equation ut = uxx. In general, an equation of the form (1) with
fu �= 0 cannot be linearised by a point transformation.

Example. We consider the integrable equation

ut = u2uxx (28)

and the class of equations

ut = unuxx + g(x, u, ux). (29)

Both of these equations are special forms of (1). Setting f = u2 and g = 0 into equations (23)
and (24) we find that equation (28) has invariants J1 = −1 and J2 = 1. From (23) and (24) we
deduce that equation (29) has invariants J1 = −1 and J2 = 1 if it is of the form

ut = unuxx +
1
2
(n− 2)un−1u2

x + k(x)unux +
2
n

dk
dx
un+1 + h(x)u

3n+4
4 . (30)

Now if we consider transformation (2), it can be shown that the most general form of (30)
(and consequently of (29)) that can be linked with (28) is

ut = unuxx +
1
2
(n− 2)un−1u2

x + k(x)unux +
2
n

dk
dx
un+1. (31)

In fact, it can be shown that the transformation

x �→
∫

e
∫
k(x)dxdx, t �→ t, u �→ e

∫
k(x)dxu

n
2

maps (28) into (31).

5 Remarks

We have shown that the class of equations (1) has no differential invariants of order zero and
order one. We have determined two functionally independent differential invariants of second
order. In order to produce higher order invariants, we need to follow the procedure as above by
considering higher order prolongations, or alternatively we can introduce the idea of invariant
differentiation. Details about invariant differentiation can be found in the book of Ibragimov [3].

We note that for the invariants (23) and (24) we need to have fu �= 0. Hence in the case
where fu = 0, that is equation ut = f(x)uxx + g(x, u, ux), needs to be considered separately.
However, by introducing a new space variable ξ =

∫
1

f(x)dx, this latter equation takes the form
ut = uξξ + h(ξ, u, uξ). The problem of classification of differential invariants for the class of
equations ut = uxx + g(x, u, ux) will be considered in a separate article in the near future.
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