Application of the Orbits Method to Integration of Linear Differential Equations with Non-Commutative Symmetries

Igor V. SHIROKOV
Physics Department, Omsk State University, 55-a Mira Ave., 644077 Omsk, Russia
E-mail: shirokov@univer.omsk.su

Linear PDE's are considered in the article. The equation to be solved is reduced to the equation on Lagrange submanifold to the coadjoint orbit. As a result we obtained necessary and sufficient conditions of integrability for invariant linear differential equations.

1 Introduction

The most widespread integration method the linear partial differential equations

$$
\begin{equation*}
H\left(z, \partial_{z}\right) \varphi(z)=E \varphi(z), \quad z \in \mathbb{Z} \subset \mathbb{R}^{N}, \quad \varphi(z) \in C^{\infty}(\mathbb{Z}) \tag{1}
\end{equation*}
$$

is separation of variables [1] that uses commutative algebra of symmetries of equation (1). The main goal in separation of variables is to solve eigenvalue problem

$$
\begin{equation*}
Y_{\mu} \psi(z)=\lambda_{\mu} \psi(z), \quad Y_{1}=H, \quad \lambda_{1}=E, \quad\left[Y_{\mu}, Y_{\nu}\right]=0 \tag{2}
\end{equation*}
$$

Commutative algebra of symmetries is not a sufficient condition for the separation of variables. It is necessary for the solvability of system (2) that operators Y_{μ} must meet additional requirements [2].

Let linear differential equation (1) allow a non-Abelian symmetry group G. We shall now investigate the most efficient way how the non-Abelian symmetry group can be used for the integration of that equation.

2 Main theorem

Let $M=G / H$ be the regular orbit of group action G on $Z ; x$ are local coordinates on homogeneous space $M, X_{A}\left(x, \partial_{x}\right) \equiv X_{A}^{a}(x) \partial_{x^{a}}$ are generators of the transformation group which form Lie algebra $\mathcal{G}:\left[X_{A}, X_{B}\right]=C_{A B}^{C} X_{C}, y$ are the invariants of the transformation group $\left(X_{A} y=0\right)$, $z \leftrightarrow(x, y)$.

Theorem 1. Equation (1) with N variables that allows a Lie symmetry group G can be reduced to linear differential equations with N^{\prime} variables:

$$
\begin{equation*}
N^{\prime}=N-\operatorname{dim} M+d(M), \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
d(M)=\frac{1}{2} \operatorname{dim} \mathcal{G} / \mathcal{G}^{\lambda}-\operatorname{dim} \mathcal{H} / \mathcal{H}^{\lambda} . \tag{4}
\end{equation*}
$$

Here \mathcal{H} is Lie algebra of isotropy subgroup H, λ is regular element of the space $\mathcal{H}^{\perp}=\{f \in$ $\left.\mathcal{G}^{*} \mid\langle f, \mathcal{H}\rangle=0\right\} \subset \mathcal{G}^{*}, \mathcal{G}^{\lambda}$ is annihilator of the covector $\lambda \in \mathcal{H}^{\perp}, \mathcal{H}^{\lambda}=\mathcal{G}^{\lambda} \cap \mathcal{H}$.

Non-negative integer $d(M)$, which is called defect of homogeneous space M can be easily calculated using structural constants of Lie algebra \mathcal{G} and its subalgebra \mathcal{H} [3]:

$$
d(M)=\frac{1}{2} \operatorname{rank}\langle\lambda,[\mathcal{G}, \mathcal{G}]\rangle-\operatorname{rank}\langle\lambda,[\mathcal{G}, \mathcal{H}]\rangle .
$$

In the case when N^{\prime} from (3) equals 1 we obtain ordinary differential equation and we call initial equation integrable.

Homogeneous spaces for which $d(M)=0$ are called commutative. The class of commutative spaces includes, in particular, all of the symmetric and weakly symmetries spaces [4].

Let us show the main constructions, sufficient for the proof of the Theorem 1 [5].
Let us consider associative algebra D, generated by the finite set of elements $\left\{E_{\mu}\right\}$. Let \mathcal{F} be a linear space with the basis $\left\{E_{\mu}\right\}, S(\mathcal{F})$ is a symmetric algebra, then $S(\mathcal{F}) \simeq D$.

We define a skew-symmetric bilinear form (commutator)

$$
[A, B] \in S(\mathcal{F}), \quad \forall A, B \in \mathcal{F}
$$

such that Jacobi identities are satisfied

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]=0, \quad \forall A, B, C \in \mathcal{F} .
$$

(We assume here that the form acts on $S(\mathcal{F})$ according to the Leibnitz rule).
For basis elements we have:

$$
\left[E_{\mu}, E_{\nu}\right]=\Omega_{\mu \nu}(E) \in S(\mathcal{F}), \quad \mu, \nu=1, \ldots, \operatorname{dim} \mathcal{F}
$$

Algebra $S(\mathcal{F})$ is called functional algebra (\mathcal{F}-algebra). In particular, if $\Omega_{\mu \nu}$ in formula (4) appears to be a quadratic polynomial, then we call it a quadratic algebra, and so on.

The space of smooth functions on \mathcal{F}^{*} is Poisson algebra with the Poisson bracket:

$$
\{\varphi, \psi\}^{\mathcal{F}}(g)=\Omega_{\mu \nu}(g) \frac{\partial \varphi(g)}{\partial g_{\mu}} \frac{\partial \psi(g)}{\partial g_{\nu}}, \quad g=g_{\mu} E^{\mu} \in \mathcal{F}^{*}, \quad \varphi, \psi \in C^{\infty}\left(\mathcal{F}^{*}\right)
$$

The Poisson-Lie bracket is defined on the space of functions on \mathcal{G}^{*} :

$$
\begin{equation*}
\{\varphi, \psi\}(f)=C_{A B}^{C} f_{C} \frac{\partial \varphi(f)}{\partial f_{A}} \frac{\partial \psi(f)}{\partial f_{B}}, \quad f=f_{A} e^{A} \in \mathcal{G}^{*}, \quad \varphi, \psi \in C^{\infty}\left(\mathcal{G}^{*}\right) \tag{5}
\end{equation*}
$$

Every Lie group G, acting on homogeneous space M, corresponds to \mathcal{F}-algebra of invariant linear operators on $C^{\infty}(M)$. Let us note as $L_{\mu}\left(x, \partial_{x}\right)$ independent operators, forming the \mathcal{F} algebra

$$
\begin{align*}
& {\left[L_{\mu}\left(x, \partial_{x}\right), X_{A}\left(x, \partial_{x}\right)\right]=0, \quad \mu=1, \ldots, \operatorname{dim} \mathcal{F}, \quad A=1, \ldots, \operatorname{dim} \mathcal{G},} \\
& {\left[L_{\mu}, L_{\nu}\right]=\Omega_{\mu \nu}(L) \in S(\mathcal{F}) .} \tag{6}
\end{align*}
$$

The dimension of the \mathcal{F}-algebra invariant operators is given by the following formula [3]

$$
\begin{equation*}
\operatorname{dim} \mathcal{F}=\operatorname{dim} \mathcal{G}+\operatorname{dim} \mathcal{H}^{\lambda}-2 \operatorname{dim} \mathcal{H}, \quad \lambda \in \mathcal{H}^{\perp} \tag{7}
\end{equation*}
$$

We introduce symbols of operators $X_{A}(x, p) \equiv X_{A}^{a}(x) p_{a}, L_{\mu}(x, p) \in C^{\infty}\left(T^{*} M\right)$:

$$
\begin{align*}
& \left\{X_{A}(x, p), X_{B}(x, p)\right\}=C_{A B}^{C} X_{C}(x, p), \quad\left\{L_{\mu}(x, p), L_{\nu}(x, p)\right\}=\Omega_{\mu \nu}(L) \tag{8}\\
& \left\{X_{A}(x, p), L_{\mu}(x, p)\right\}=0 \tag{9}
\end{align*}
$$

Momentum mappings

$$
\mu: T^{*} X \rightarrow \mathcal{G}^{*}, \quad X(x, p)=f \in \mathcal{G}^{*}, \quad \tilde{\mu}: T^{*} X \rightarrow \mathcal{F}^{*}, \quad L(x, p)=g \in \mathcal{F}^{*}
$$

are Poisson mappings on Poisson algebra of functions on $T^{*} M$ in Poisson algebra on \mathcal{G}^{*} and \mathcal{F}^{*}. Also symplectic sheets $\Omega \subset \mathcal{G}^{*}$ and $\tilde{\Omega} \subset \mathcal{F}^{*}$ mutually correspond [6]:

$$
\Omega=\mu\left(\tilde{\mu}^{-1}(\tilde{\Omega})\right), \quad \tilde{\Omega}=\tilde{\mu}\left(\mu^{-1}(\Omega)\right), \quad \operatorname{codim} \Omega=\operatorname{codim} \tilde{\Omega} .
$$

Let Q be a Lagrange submanifold on the symplectic sheet Ω (coadjoint orbit) in \mathcal{G}^{*}. Let us represent the algebra \mathcal{G} by differential operators $l\left(q, \partial_{q}, J\right)$, which form an irreducible representation of algebra \mathcal{G} in the space of functions on $Q[7]$:

$$
\begin{equation*}
\left[l_{A}\left(q, \partial_{q} ; J\right), l_{B}\left(q, \partial_{q} ; J\right)\right]=C_{A B}^{C} l_{C}\left(q, \partial_{q} ; J\right) . \tag{10}
\end{equation*}
$$

Here q are local coordinates on Q, J are parameters, "numerating" orbits in \mathcal{G}^{*} and satisfying the condition for orbits to be integer.

We note as U a Lagrange submanifold to symplectic sheet $\tilde{\Omega}$. The defect $d(M)$ of homogeneous space M is defined as dimension of Lagrange submanifold to symplectic sheet on the coalgebra of invariant operators [3]:

$$
\begin{equation*}
d(M)=\operatorname{dim} U=\frac{1}{2} \operatorname{dim} \tilde{\Omega} . \tag{11}
\end{equation*}
$$

We will note index of \mathcal{F}-algebra (ind \mathcal{F}) the number of functionally independent elements that generate center of the enveloping field of algebra \mathcal{F}.

Obviously the equality

$$
\begin{equation*}
\operatorname{dim} \mathcal{F}-\operatorname{ind} \mathcal{F}=\operatorname{dim} \tilde{\Omega}=2 d(M) \tag{12}
\end{equation*}
$$

takes place.
We now construct irreducible representation of algebra \mathcal{F} on Lagrange submanifold U of symplectic sheet $\tilde{\Omega}$ in \mathcal{F}^{*} with differential operators $\zeta\left(u, \partial_{u} ; J\right)$:

$$
\begin{equation*}
\left[\zeta_{\mu}\left(u, \partial_{u} ; J\right), \zeta_{\nu}\left(u, \partial_{u} ; J\right)\right]=-\Omega_{\mu \nu}\left(\zeta\left(u, \partial_{u} ; J\right)\right) . \tag{13}
\end{equation*}
$$

Set of generalized functions $D_{q u}^{J}(x)$, is defined from the equations

$$
\begin{equation*}
\left(X_{A}\left(x, \partial_{x}\right)+l_{A}\left(q, \partial_{q} ; J\right)\right) D_{q u}^{J}(x)=0, \quad\left(L_{\mu}\left(x, \partial_{x}\right)-\zeta_{\mu}\left(u, \partial_{u} ; J\right)\right) D_{q u}^{J}(x)=0 \tag{14}
\end{equation*}
$$

It is full and orthogonal on $C^{\infty}(M)$ [5]:

$$
\begin{align*}
& \int_{M} D_{\tilde{q} \tilde{u}}^{J}(x) \overline{D_{q u}^{J}(x)} d \mu(x)=\delta(J, \tilde{J}) \delta(q, \tilde{q}) \delta(u, \tilde{u}), \tag{15}\\
& \int D_{q u}^{J}(x) \overline{D_{q u}^{J}(\tilde{x})} d \mu(J) d \mu(q) d \mu(u)=\delta(x, \tilde{x}) \tag{16}
\end{align*}
$$

Since operator $H\left(y, \partial_{y}, x, \partial_{x}\right)$ of equation (1) is G-invariant, so it may be expressed as follows:

$$
H\left(y, \partial_{y}, x, \partial_{x}\right)=F\left(y, \partial_{y}, L\left(x, \partial_{x}\right)\right) .
$$

Because of that solution basis of equation (1), marked by the parameters (J, q) may be constructed following way:

$$
\begin{equation*}
\varphi_{q}^{J}(y, x)=\int_{U} \tilde{\varphi}^{J}(y, u) D_{q u}^{J}(x) d \mu(u), \tag{17}
\end{equation*}
$$

where function $\tilde{\varphi}^{J}(y, u)$ is a solution of the equation

$$
\begin{equation*}
\tilde{H}\left(y, \partial_{y}, u, \partial_{u} ; J\right) \tilde{\varphi}^{J}(y, u)=0 \tag{18}
\end{equation*}
$$

Here $H\left(y, \partial_{y}, u, \partial_{u} ; J\right)=F\left(y, \partial_{y}, \zeta^{+}\left(u, \partial_{u} ; J\right)\right)$.
Since the expression is correct (11), the number of independent variables N^{\prime} in equation (18) is defined by formula (3).

Finally from (11) we have the number of independent variables N^{\prime} in equation (18) to be given by formula (3).

3 Example

Let us illustrate the Theorem presented in this article by a non-trivial example. We consider an equation of type (1), where H is the Laplace operator

$$
\begin{equation*}
\Delta \varphi(x) \equiv \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{i}} g^{i j}(x) \sqrt{g} \frac{\partial}{\partial x^{j}} \varphi(x)=E \varphi(x), \quad g \equiv \operatorname{det} g_{i j} \tag{19}
\end{equation*}
$$

on the Riemannian manifold with metric (below $c_{i}=$ const)

$$
g^{i j}(x)=\left(\begin{array}{cccc}
c_{1} e^{2 x_{4}} x_{3}^{2} & c_{1} e^{2 x_{4}} x_{3} & -c_{4} x_{3} e^{-x_{4}} / 2 & c_{3} x_{3} e^{x_{4}} / 2+c_{4} e^{-x_{4}} / 2 \tag{20}\\
c_{1} e^{2 x_{4}} x_{3} & c_{1} e^{2 x_{4}} & -c_{4} e^{-x_{4}} / 2 & c_{3} e^{x_{4}} / 2 \\
-c_{4} x_{3} e^{-x_{4}} / 2 & -c_{4} e^{-x_{4}} / 2 & 0 & 0 \\
c_{3} x_{3} e^{x_{4}} / 2+c_{4} e^{-x_{4}} / 2 & c_{3} e^{x_{4}} / 2 & 0 & c_{2}
\end{array}\right)
$$

That metric is not Stakkel which means that Hamilton-Jacobi equation as well as Klein-Gordon and Dirac equations cannot be solved using separation of variables. From the point of existing methods the corresponding equation is not integrable.

Metric (20) allows five-dimensional motion group formed by operators

$$
\begin{align*}
& X_{1}=\partial_{1}, \quad X_{2}=\partial_{2}, \quad X_{3}=x_{2} \partial_{1}+\partial_{3}, \\
& X_{4}=-x_{1} \partial_{1}+x_{2} \partial_{2}-2 x_{3} \partial_{3}+\partial_{4}, \quad X_{5}=x_{1} \partial_{2}-x_{3}^{2} \partial_{3}+x_{3} \partial_{4}, \tag{21}
\end{align*}
$$

that form a basis of the Lie algebra $\mathcal{G}=\left\{e_{A}\right\}$ with the following nonzero commutation rules:

$$
\begin{array}{lll}
{\left[e_{1}, e_{4}\right]=-e_{1},} & {\left[e_{1}, e_{5}\right]=e_{2},} & {\left[e_{2}, e_{3}\right]=e_{1},} \\
{\left[e_{3}, e_{4}\right]=-2 e_{3},} & {\left[e_{3}, e_{5}\right]=e_{4},} & {\left[e_{2}, e_{4}\right]=e_{2},} \\
\left.e_{5}\right]=-2 e_{5}
\end{array}
$$

Here this group acts on a four-dimensional homogeneous Riemannian space with one dimensional isotropy subgroup. Substituting $x=0$ in operators X_{A} (21), we find isotropy subalgebra $\mathcal{H}=\left\{e_{5}\right\}$. Algebra \mathcal{G} is of an odd index 1, i.e. it has only one Casimir function $K(f)=f_{1} f_{2} f_{4}+f_{1}^{2} f_{5}-f_{2}^{2} f_{3}$, generating center of the Poisson algebra with the PoissonLie bracket defined by (5). Regular element of space \mathcal{H}^{\perp} is non-degenerate and looks like: $\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, 0\right)$. Annihilator of that covector λ is one-dimensional and, because it is degenerate, is the gradient of Casimir function:

$$
\mathcal{G}^{\lambda}=\left\{\left.\nabla K(f)\right|_{f=\lambda}=\lambda_{2} \lambda_{4} e_{1}+\left(\lambda_{1} \lambda_{4}-2 \lambda_{2} \lambda_{3}\right) e_{2}-\lambda_{2}^{2} e_{3}+\lambda_{1} \lambda_{2} e_{4}+\lambda_{1}^{2} e_{5}\right\} .
$$

So we get: $\mathcal{H}^{\lambda}=\{0\}$. According to (4) our Riemannian space is non-commutative and its defect is $d(M)=1$. Making a substitution in (3) $N=\operatorname{dim} M=4, d(M)=1$, we get $N^{\prime}=1$, which means according to the Theorem that equation (19) may be reduced to a linear firstorder differential equation. Also formulae (7), (12) give $\operatorname{dim} \mathcal{F}=3$, ind $\mathcal{F}=1$, i.e. the algebra
of invariant operators is three-dimensional and center of enveloping field is generated by one operator.

Let us find the algebra of invariant operators for this case. Symmetry operators X_{A} are projections of left-invariant vector fields $\xi_{A}: X_{A}=\pi_{*} \xi_{A}$, where mapping $\pi: G \rightarrow M=G / H$ is a projection of group G on the right coset space. Here we note as η_{A} the algebra of right-invariant vector fields:

$$
\left[\xi_{A}, \xi_{B}\right]=C_{A B}^{C} \xi_{C}, \quad\left[\eta_{A}, \eta_{B}\right]=C_{A B}^{C} \eta_{C}, \quad\left[\xi_{A}, \eta_{B}\right]=0
$$

In canonical coordinates of type II: $g=g_{5} g_{4} g_{3} g_{2} g_{1}$ on the Lie group, where $g_{k}=\exp \left(x_{k} e_{k}\right)$, leftand right-invariant vector fields are:

$$
\begin{aligned}
& \xi_{1}=\partial_{1}, \quad \xi_{2}=\partial_{2}, \quad \xi_{3}=x_{2} \partial_{1}+\partial_{3}, \\
& \xi_{4}=-x_{1} \partial_{1}+x_{2} \partial_{2}-2 x_{3} \partial_{3}+\partial_{4}, \quad \xi_{5}=x_{1} \partial_{2}-x_{3}^{2} \partial_{3}+x_{3} \partial_{4}+e^{-2 x_{4}} \partial_{5}, \\
& \eta_{1}=-\left(e^{-x_{4}}+x_{3} x_{5} e^{x_{4}}\right) \partial_{1}-e^{x_{4}} x_{5} \partial_{2}, \quad \eta_{2}=-e^{x_{4}} x_{3} \partial_{1}-e^{x_{4}} \partial_{2}, \\
& \eta_{3}=-e^{-2 x_{4}} \partial_{3}-x_{5} \partial_{4}+x_{5}^{2} \partial_{5}, \quad \eta_{4}=-\partial_{4}+2 x_{5} \partial_{5}, \quad \eta_{5}=-\partial_{5} .
\end{aligned}
$$

(It is obvious that symmetry operators X_{A} are left-invariant vector fields restricted on the space of functions, which are independent of coordinate $\left.x_{5}\right)$. Invariant operators $L\left(x, \partial_{x}\right)$ are operator functions of right-invariant field restricted on the class of functions which are constant on every right coset (in our case functions, which are independent of coordinate x_{5}) and commuting with every field η_{α}, which form isotropy algebra $\mathcal{H}=\left\{\eta_{\alpha}\right\}$ (in our case, commuting with η_{5}). Invariant functions $L(x, p)$, which are symbols of invariant operators are easily obtained:

$$
L_{\mu}(x, p)=\left.a_{\mu}(f)\right|_{f=\eta^{c l}}, \quad \eta_{A}^{c l} \equiv \eta_{A}^{i}(x) p_{i}
$$

where functions $a_{\mu}(f) \in C^{\infty}\left(\mathcal{G}^{*}\right)$ are solutions of the equations

$$
\begin{equation*}
\left.\left(C_{\alpha A}^{B} f_{B} \frac{\partial a(f)}{\partial f_{A}}\right)\right|_{f=\lambda}=0, \quad \lambda \in \mathcal{H}^{\perp}, \quad \alpha=1, \ldots, \operatorname{dim} \mathcal{H} \tag{22}
\end{equation*}
$$

In our case equation (22) transforms in

$$
f_{2} \frac{\partial a(f)}{\partial f_{1}}+f_{4} \frac{\partial a(f)}{\partial f_{3}}=0
$$

As we solve that equation, we get: $a_{1}=f_{2}, a_{2}=f_{4}, a_{3}=f_{1} f_{4}-f_{2} f_{3}$. So, invariant functions are:

$$
\begin{aligned}
& L_{1}(x, p)=\left.\eta_{2}^{c l}(x, p)\right|_{p_{5}=0}=-e^{x_{4}}\left(x_{3} p_{1}+p_{2}\right), \quad L_{2}(x, p)=\left.\eta_{4}^{c l}(x, p)\right|_{p_{5}=0}=-p_{4} \\
& L_{3}(x, p)=\left.\left(\eta_{1}^{c l}(x, p) \eta_{4}^{c l}(x, p)-\eta_{2}^{c l}(x, p) \eta_{3}^{c l}(x, p)\right)\right|_{p_{5}=0}=e^{-x_{4}}\left(p_{1} p_{4}-p_{2} p_{3}-x_{3} p_{1} p_{3}\right) .
\end{aligned}
$$

Invariant operators look as follows $L\left(x, \partial_{x}\right)$

$$
L_{1}=i e^{x_{4}}\left(x_{3} \partial_{1}+\partial_{2}\right), \quad L_{2}=i\left(\partial_{4}+1\right), \quad L_{3}=-e^{-x_{4}}\left(\partial_{14}-x_{3} \partial_{13}-\partial_{23}\right)
$$

are self-adjoint in respect to Riemannian measure $\sqrt{g} d x=C \exp \left(2 x_{4}\right) d x$ and form solvable three-dimensional Lie algebra: $i\left[L_{1}, L_{2}\right]=L_{1},\left[L_{1}, L_{3}\right]=0, i\left[L_{2}, L_{3}\right]=L_{3}$. Center of the enveloping \mathcal{F}-algebra is generated by one element $Z=L_{1} L_{3}$, which coincides with Casimir operator $K(-i X)$ for algebra $\mathcal{G}: Z\left(x, \partial_{x}\right)=L_{1}\left(x, \partial_{x}\right) L_{3}\left(x, \partial_{x}\right)=K\left(-i X\left(x, \partial_{x}\right)\right)$:

$$
L_{1} L_{3}=-i\left\{X_{1}, X_{2}, X_{4}\right\}-i\left\{X_{1}, X_{1}, X_{5}\right\}+i\left\{X_{2}, X_{2}, X_{3}\right\} .
$$

Here and below figure brackets note the symmetrized product of operators. The Laplace operator belongs to the enveloping field of the \mathcal{F}-algebra since it is invariant operator:

$$
\begin{equation*}
-\Delta=c_{1} L_{1}^{2}\left(x, \partial_{x}\right)+c_{2} L_{2}^{2}\left(x, \partial_{x}\right)+c_{3}\left\{L_{1}\left(x, \partial_{x}\right), L_{2}\left(x, \partial_{x}\right)\right\}+c_{4} L_{3}\left(x, \partial_{x}\right)+c_{2} \tag{23}
\end{equation*}
$$

Let us construct an irreducible representation of algebra \mathcal{G} in the space of function on the Lagrange submanifold Q of coadjoint orbit Ω (symplectic sheet) (10):

$$
\begin{equation*}
l_{1}=i q_{1}, \quad l_{2}=-i q_{2}, \quad l_{3}=q_{1} \partial_{q_{2}}, \quad l_{4}=q_{1} \partial_{q_{1}}-q_{2} \partial_{q_{2}}, \quad l_{5}=q_{2} \partial_{q_{1}}+i J / q_{1}^{2} \tag{24}
\end{equation*}
$$

here $\left(q_{1}, q_{2}\right) \in Q=\mathbb{R}^{2}$. Because of irreducibility $K\left(-i l\left(q, \partial_{q} ; J\right)\right)=J$. Let us note that operators $l_{A}(24)$ are skew-Hermitian in respect to measure $d \mu(q)=d q_{1} d q_{2}$ on Q. Parameter J that numerates coadjoint orbits is not quantized and may be of any real value.

Let us construct in the same way irreducible representation of \mathcal{F}-algebra in the space of function on Lagrange submanifold U of the symplectic sheet $\tilde{\Omega}(13)$ corresponding with representation (24):

$$
\begin{equation*}
\zeta_{1}=u, \quad \zeta_{2}=-i u \partial_{u}, \quad \zeta_{3}=J / u, \quad\left(u \in U=\mathbb{R}^{1} \backslash\{0\}\right) \tag{25}
\end{equation*}
$$

These operator are self-adjoint in respect to measure $d \mu(u)=d u / u$ on U.
We find set of functions $D_{q u}^{J}(x)$, numerated by variables (J, q, u) from solution of overdetermined system (14):

$$
\begin{equation*}
D_{q u}^{J}(x)=\exp \left(i\left(q_{2} x_{2}-q_{1} x_{1}\right)-i J e^{x_{4}} / q_{1} u\right) \delta\left(e^{x_{4}}\left(x_{3} q_{1}-q_{2}\right)-u\right) \tag{26}
\end{equation*}
$$

That set of functions satisfies ortogonality and completeness conditions on M (15), (16) (in the right sides of these formulae delta-functions are presented with respect to corresponding measures $\left.d \mu(J)=d J /(2 \pi)^{3}\right)$.

Let us present solution $\varphi_{q}^{J}(x)$ of equation (19) as (17)

$$
\begin{equation*}
\varphi_{q}^{J}(x)=\int_{U} \tilde{\varphi}^{J}(u) D_{q u}^{J}(x) d \mu(u) \tag{27}
\end{equation*}
$$

then, using expressions $(14),(23),(25)$ for function $\tilde{\varphi}^{J}(u)$ we obtain ordinary differential equation

$$
\left(c_{2} u^{2} \partial_{u}^{2}+u\left(c_{2}-i c_{3} u\right) \partial_{u}+i c_{3} u / 2-c_{1} u^{2}-c_{4} J / u-c_{2}\right) \tilde{\varphi}^{J}(u)=E \tilde{\varphi}^{J}(u)
$$

[1] Miller W., Symmetry and separation of variables, Addison Wesley, 1977.
[2] Bagrov V.G. and Gitman D.M., Exact solutions of relativistic wave equations, Dordrecht - Boston - London, Kluwer Academic Press, 1990.
[3] Shirokov I.V., Identities and invariant operators on homogeneous spaces, Theor. Math. Phys., 2001, V.126, 326-338.
[4] Akhiezer D.N. and Vinberg E.B., Weakly symmetric spaces and spherical varieties, Transformation Groups, V.4, N 1, 1999, 3-24.
[5] Shirokov I.V., K-orbits, harmonic analysis on homogeneous spaces, and integration of differential equations, Preprint, Omsk, Omsk State Univ., 1998 (in Russian).
[6] Karasev M.V. and Maslov V.P., Nonlinear Poisson brackets. Geometry and quantization, Moscow, Nauka, 1990 (in Russian).
[7] Shirokov I.V., Darboux coordinates on K-orbits and the spectra of Casimir operators on Lie groups, Theor. Math. Phys., 2000, V.123, 754-767.

