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The object of this paper is to study a problem of constructing of an approximate one-
frequency solutions for weakly nonlinear ordinary differential equations with deviated argu-
ment and slowly varying coefficients. On the basis of asymptotic techniques of nonlinear
mechanics an algorithm for asymptotic integration of differential equation under considera-
tion is given.

1 Introduction and formulation of the problem

Among numerous modern analytic methods of studying nonlinear oscillatory processes asymp-
totic methods are often applied [1]. The effectiveness of these methods in various fields of applied
mathematics and mechanics is now recognized all over the world because those methods enable
not only to construct approximate solutions of corresponding differential equations, but also to
examine qualitative properties of nonlinear processes described by given equations.

In present paper we consider the problem of construction of one-frequency asymptotic ap-
proximations for weakly nonlinear multi-dimensional oscillatory systems with delay and slowly
varying parameters. Such a problem is of a certain practical importance, through its connection
with studying of non-stationary processes in oscillatory systems. Similar problems may occur,
for example, in the systems with changing mass and inflexibility, in particular, in numerous
problems of electronics and radiotechnics, connected with the problems of modulation, charged
particles acceleration phenomena, control theory, etc.

The purpose of the present paper is to develop techniques for constructing of one-frequency
asymptotic solution to the system of weakly nonlinear ordinary differential equations with de-
viated argument and slowly varying coefficients of the following form

N∑
s=1

(
αrs(τ)

dxs(t)
dt

+ βrs(τ)
dxs(t− σ(τ))

dt
+ γrs(τ)xs(t) + δrs(τ)xs(t− σ(τ))

)

= εfr (τ, θ, x1(t), . . . , xN (t), x1(t− σ(τ)), . . . , xN (t− σ(τ))) , (1)

where ε is a small parameter; τ = εt is the slow time; dθ/dt = ν(τ) is an instant frequency of
an external periodical force; σ(τ) ≥ σ0 > 0 is a delay; functions fr(τ, θ, x1, . . . , xN , y1, . . . , yN )
are supposed to be 2π-periodic with respect to θ of the following representation

fr(τ, θ, x1, . . . , xN , y1, . . . , yN ) =
∑

|m|≤Mr

frm(τ, x1, . . . , xN , y1, . . . , yN )eimθ.
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We also supposed the coefficients frm(τ, x1, . . . , xN , y1, . . . , yN ), |m| ≤ Mr, r = 1, N to be
polynomials in x1, . . . , xN ; y1, . . . , yN infinite differentiable with respect to τ . The values αrs =
αrs(τ), βrs = βrs(τ), γrs = γrs(τ), δrs = δrs(τ), r, s = 1, N , ν = ν(τ), σ = σ(τ) are supposed to
be sufficiently smooth in variable τ .

We assume that the characteristic equation of system (1), i.e. equation det ‖κrs(λ)‖ = 0,
where

κrs(λ) = λαrs(τ) + γrs(τ) + (λβrs(τ) + δrs(τ))e−λσ(τ),

has 2N solutions λj = ±iωj(τ), j = 1, N , at every moment of a slow time τ . At the same time
the other roots of characteristic equation are supposed to have negative real parts.

Thus, fundamental frequencies ωj = ωj(τ), j = 1, N , of the unperturbed system (1) (when
ε = 0) at every τ satisfy the characteristic equation det ‖κrs(iωj(τ))‖ = 0, and are smooth
enough in τ . We also assume that the unperturbed system (1) has only the trivial equilibrium
point x1 = x2 = · · · = xN = 0, and the conditions of non-existence of interior resonance hold.

Let ϕ(j)
k = ϕ

(j)
k (τ), j, k = 1, N be so-called normal functions being nontrivial solutions to

a system of linear algebraic homogeneous equations

N∑
s=1

κrs(iωj(τ))ϕ(j)
s (τ) = 0, j, r = 1, N,

and χ(j)
k = χ

(j)
k (τ), j, k = 1, N be solutions of the conjugate system

s=N∑
s=1

κ̄rs(iωj(τ))χ(j)
s (τ) = 0, j, r = 1, N,

that satisfy normalization conditions.
For every value of parameter τ the unperturbed system (1) has a set of periodic solutions

xs(t) = aϕ(j)
s (τ) cos (ωj(τ)t+ ϕ), j, s = 1, N,

where a = a(τ) and ϕ = ϕ(τ) are arbitrary values called normal unperturbed oscillations of the
system (1).

Basing on ideas of asymptotic techniques of nonlinear mechanics [1–4] we describe an algo-
rithm allowing us to find an approximate solution to the problem (1) asymptotically close to
normal unperturbed oscillations of system (1)

xs(t) = aϕ(1)
s (τ) cos (ω1(τ)t+ ϕ), s = 1, N.

2 Asymptotic expansion

In the context of solving the problem of construction of approximate (asymptotic) solutions,
non-resonance and resonance cases are usually studied, so solutions to the problem are found
separately for each of these cases. Dependence of both of the fundamental frequency ω(τ) and
the frequency of external force ν(τ) on slow time τ does not allow to apply such an approach to
the problem under our consideration. As it is known [1,5], the problem is connected with possible
transfers of the system (1) from one, for example, non-resonance state, to another resonance
state, and vice versa, provoking varying of the frequencies ω(τ), ν(τ) with slow time τ.

Thus, taking into consideration dependence of frequencies of the system (1) on slow time τ
we seek an asymptotic solution of the problem (1) in the following form:

xs(t) = aϕ(1)
s (τ) cosϕ+

∞∑
k=1

εkUks(τ, a, θ, ϕ), s = 1, N, (2)
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where ϕ = p
q θ+ψ; numbers p, q are distinct natural members and depend on correlation between

frequencies ω1(τ), ν(τ); functions a(t) and ψ(t) satisfy the following differential equations

da

dt
=

∞∑
k=1

εkAk(τ, a, ψ),
dψ

dt
= ω1(τ) − p

q
ν(τ) +

∞∑
k=1

εkBk(τ, a, ψ), (3)

where functions Ak(τ, a, ψ), Bk(τ, a, ψ) for any k ∈ N are 2π-periodic in variable ψ.
Functions Uks(τ, a, θ, ϕ), k ∈ N, s = 1, N , are supposed to be 2π-periodic in variables θ, ψ

without first harmonics in their Fourier series expansion on ϕ, i.e.,

∫ 2π

0
Uks(τ, a, θ, ϕ)e±iϕ dϕ = 0, k ∈ N, s = 1, N. (4)

Conditions (5) allow us to construct asymptotic solutions without secular terms.
In order to find functions Ak(τ, a, ψ), Bk(τ, a, ψ), Uk(τ, a, θ, ϕ), k ∈ N, it becomes necessary

to substitute expansion (2) into equation (1), taking into account differential equations (3),
expand an obtained relation into series in small parameter ε and finally equate terms at the
same degree of ε. Let us introduce the following notations [6]:

Q0 =
(
ω1(τ) − p

q
ν(τ)

)
∂

∂ψ
, P0 = ω1(τ)

∂

∂ϕ
+ ν(τ)

∂

∂θ
, N0 =

∞∑
k=0

(−σ(τ))k+1

(k + 1)!
Q0,

Mrs = αrs(τ)P0 + γrs(τ), Nrs = βrs(τ)P0 + δrs(τ),

Lr =
N∑
s=1

ϕ(1)
s (τ) {αrs(τ) + δrs(τ)N0 cos (ω1(τ)σ(τ))

+ βrs(τ)[(N0Q0 + 1) cos (ω1(τ)σ(τ)) + ω1(τ)N0 sin (ω1(τ)σ(τ))]} ,

Er =
N∑
s=1

ϕ(1)
s (τ) {δrs(τ)N0 sin (ω1(τ)σ(τ))

+ βrs(τ)[(N0Q0 + 1) sin (ω1(τ)σ(τ)) − ω1(τ)N0 cos (ω1(τ)σ(τ))]} . (5)

By substitution of formulas (5) into the right part of equation (1), by standard way we obtain
the following relations

N∑
s=1

[MrsUks(τ, a, θ, ϕ) +NrsUks(τ, a, θ − νσ, ϕ− ω1σ)]

= Frk(τ, a, θ, ϕ) − (LrAk + aErBk) cosϕ+ (ErAk − aLrBk) sinϕ, (6)

where an explicit form of functions Frk(τ, a, θ, ϕ), k ∈ N, r = 1, N , is found after the sequel deter-
mination of functions Am(τ, a, ψ), Bm(τ, a, ψ), Um(τ, a, θ, ϕ), m = 1, k − 1, r = 1, N . To realize
it we have to use the 2π-periodicity property of functions Ak(τ, a, ψ), Bk(τ, a, ψ), Uk(τ, a, θ, ϕ),
Frk(τ, a, θ, ϕ), r = 1, N , k ∈ N, with respect to variables ψ, ϕ, θ correspondingly, and represent
these functions by means of their Fourier series as follows

Urk(τ, a, θ, ϕ) =
+∞∑

m,n=−∞
Urkmn(τ, a)ei(mθ+nϕ),

Frk(τ, a, θ, ϕ) =
+∞∑

m,n=−∞
Frkmn(τ, a)ei(mθ+nϕ),
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Ak(τ, a, ψ) =
+∞∑

n=−∞
Akn(τ, a)einψ, Bk(τ, a, ψ) =

+∞∑
n=−∞

Bkn(τ, a)einψ, (7)

where

Urkmn(τ, a) =
1

4π2

∫ 2π

0

∫ 2π

0
Urk(τ, a, θ, ϕ)e−i(mθ+nϕ) dθdϕ,

Frkmn(τ, a) =
1

4π2

∫ 2π

0

∫ 2π

0
Frk(τ, a, θ, ϕ)e−i(mθ+nϕ) dθdϕ,

Akn(τ, a) =
1
2π

∫ 2π

0
Ak(τ, a, ψ)e−inψ dψ, Bkn(τ, a) =

1
2π

∫ 2π

0
Bk(τ, a, ψ)e−inψ dψ.

Taking into consideration the relation ϕ− p
q θ = ψ we separate resonance and non-resonance

terms in Fourier expansion (7) of functions Frk(τ, a, θ, ϕ), k ∈ N, in the following way

Frk(τ, a, θ, ϕ) =
∑

mq+(n±1)p �=0

Frkmn(τ, a)ei(mθ+nϕ) +
∑

mq+(n±1)p=0

Frkmn(τ, a)ei(mθ+nϕ).

In order for the equations (6) to have 2π-periodic in ϕ, θ solutions it is necessary that the
following condition holds:

N∑
r=1

χ(1)
r [LrAk + aErBk) cosϕ+ (ErAk − aLrBk) sinϕ]

=
∑

mq+(n±1)p=0

Frkmn(τ, a)ei(mθ+nϕ), m, n ∈ Z, k ∈ N, (8)

where Frkmn(τ, a) are Fourier coefficients of functions Frk(τ, a, θ, ϕ).
The latter term in (8) can be given as

∑
mq+(n±1)p=0

Frkmn(τ, a)ei(mθ+nϕ)

=
+∞∑

n=−∞

[
Frk,−pn,qn−1(τ, a)eiϕ + Frk,−pn,qn+1(τ, a)e−iϕ

]
eiqnψ.

Using both condition (4) and relation (6)–(8) we find

N∑
s=1

κrs(mν + nω1)Uksmn(τ, a) = Frkmn(τ, a), r = 1, N, (9)

where mq + (n± 1)p �= 0, m,n ∈ Z.
Evidently, the system of algebraic equations (9) has a unique solution

Uksmn(τ, a) =
∑
r=1

Dks(mν + nω1)Frkmn(τ, a) (det ‖κrs(mν + nω1)‖)−1 ,

where Dks(λ) are corresponding minors of the determinant det ‖κrs(λ)‖, if mq + (n ± 1)p �= 0,
m,n ∈ Z. In case mq + (n± 1)p = 0, m,n ∈ Z, we put Uksmn(τ, a) = 0.

Functions Ak(τ, a, ψ), Bk(τ, a, ψ), k ∈ N, are defined from the system of differential equations

LAk + aEBk = Gk(τ, a, ψ), EAk − aLBk = Hk(τ, a, ψ), (10)



One Frequency Asymptotic Solutions 1427

where

L =
N∑
r=1

χ(1)
r (τ)Lr, E =

N∑
r=1

χ(1)
r (τ)Er,

Gk(τ, a, ψ) =
N∑
r=1

χ
(1)
r (τ)
4π2

+∞∑
m=−∞

∫ 2π

0

∫ 2π

0
Frk(τ, a, θ, ϕ)eim(pθ−qϕ) (eiϕ + e−iϕ)eimqψ dθ dϕ ,

Hk(τ, a, ψ) =
N∑
r=1

iχ
(1)
r (τ)
4π2

+∞∑
m=−∞

∫ 2π

0

∫ 2π

0
Frk(τ, a, θ, ϕ)eim(pθ−qϕ) (eiϕ − e−iϕ)eimqψ dθ dϕ,

To solve equations (10), we use the Fourier representations (7) and easily find

Ak(τ, a, ψ) =
+∞∑

n=−∞

1
4π3

einψ
(L2

0n + E2
0n

)−1
∫ 2π

0

+∞∑
m=−∞

∫ 2π

0

∫ 2π

0

N∑
r=1

χ(1)
r (τ)

× Frk(τ, a, θ, ϕ)eim(pθ−qϕ)(L0n cosϕ− E0n sinϕ)ei(mq−n)ψ dθdϕdψ,

Bk(τ, a, ψ) =
+∞∑

n=−∞

1
4aπ3

einψ
(L2

0n + E2
0n

)−1
∫ 2π

0

+∞∑
m=−∞

∫ 2π

0

∫ 2π

0

N∑
r=1

χ(1)
r (τ)

× Frk(τ, a, θ, ϕ)eim(pθ−qϕ)(L0n sinϕ+ E0n cosϕ)ei(mq−n)ψ dθdϕdψ,

where

L0n =
N∑

s,r=1

χ(1)
r (τ)ϕ(1)

s (τ)
[
αrs(τ) + δrs(τ)ρ(nl(τ)) cos (ω1(τ)σ(τ))+

+ βrs(τ)e−nσ(τ)l(τ) cos (ω1(τ)σ(τ)) + βrs(τ)ω1(τ)ρ(nl(τ)) sin (ω1(τ)σ(τ)))
]
,

E0n =
N∑

s,r=1

χ(1)
r (τ)ϕ(1)

s (τ)
[
δrs(τ)ρ(nl(τ)) sin (ω1(τ)σ(τ))

+ βrs(τ)e−nσ(τ)l(τ) sin (ω1(τ)σ(τ)) − βrs(τ)ω1(τ)ρ(nl(τ)) cos (ω1(τ)σ(τ)))
]
,

ρ(nl) =
{

(e−nσl(τ) − 1)/(inl) if nl �= 0,
0 if nl = 0.

Thus, the problem of construction of one-frequency solutions to equations (1) asymptotically
close to normal unperturbed oscillations of system (1) is solved.

3 Conclusion

In the paper a problem of construction of an approximate one-frequency solutions to weakly
nonlinear ordinary differential equations with deviated argument and slowly varying coefficients
is studied. An algorithm for asymptotic integration of differential equation under consideration
is given.

The approach proposed above allows to build asymptotical solution to weakly nonlinear ordi-
nary the first order differential equations with deviated argument and slowly varying coefficients.
Having defining approximate solution (functions Ak(τ, a, ψ), Bk(τ, a, ψ), Urk(τ, a, θ, ϕ), k ∈ N,
r = 1, N) it is possible to study stationary regimes and their stability as well as processes
connected with passing through resonance zones [2].
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