Universal Structure of Jet Space

Maido RAHULA

Institute of Pure Mathematics, University of Tartu, 2 Liivi, 50409 Tartu, Estonia
E-mail: Maido.Rahula@math.ut.ee

Abstract

Operators of total differentiation D, Cartan forms ω and infinitesimal symmetries P constitute the structure of infinite jet space $J_{n, m}$. We describe these notions compactly for the space $J_{1,1}$ though reserve the possibility to pass with the help of multi-indices to general case $J_{n, m}$. Our aim is to show the universality of this structure. Every time when we differentiate a function f with respect to the vector field X on a manifold M we can determine a map $\varphi: M \rightarrow J_{1,1}$ and connect the triple (X, s, F) with the triple (D, t, U) in $J_{1,1}$, where F is the set of derivatives $f^{(k)}=X^{k} f, k=0,1,2, \ldots ; s$ is canonical parameter of X, U is the set of fiber coordinates $u^{(k)}=D^{k} u, k=0,1,2, \ldots$, and t is canonical parameter of D. Then all the invariants and symmetries of D as well as all the covariant tensors including Cartan forms can be transformed from $J_{1,1}$ onto the manifold M. The structure is universal as final object in the category of triples (X, s, F).

Let $f: V_{n} \rightarrow V_{m}$ be a smooth mapping. The infinite jet of the map f is determined by the coordinates t^{i}, u^{α} of the points $t \in V_{n}$ and $u=f(t) \in V_{m}$, and by the values of partial derivatives at t :

$$
\begin{array}{ll}
u_{i}^{\alpha}=\frac{\partial f^{\alpha}}{\partial u^{i}}(t), \quad u_{i j}=\frac{\partial^{2} f^{\alpha}}{\partial u^{i} \partial u^{j}}(t), \quad \ldots, \\
i, j=1,2, \ldots, \quad n=\operatorname{dim} V_{n}, \quad \alpha=1,2, \ldots, \quad m=\operatorname{dim} V_{m} .
\end{array}
$$

The set of the jets of f is called jet space $J_{m, n}$ where the quantities

$$
\begin{equation*}
t^{i}, \quad u^{\alpha}, \quad u_{i}^{\alpha}, \quad u_{i j}^{\alpha}, \quad \ldots \tag{1}
\end{equation*}
$$

are jet coordinates.
In the space $J_{1,1}$ we have the coordinates

$$
\begin{equation*}
t, \quad u, \quad u^{\prime}, \quad u^{\prime \prime}, \quad \ldots \tag{2}
\end{equation*}
$$

or briefly (t, U) where U is the column of elements $u, u^{\prime}, u^{\prime \prime}, \ldots$
In $J_{1,1}$ one has the natural basis $\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial U} ; d t, d U\right)$ associated with the coordinates (2). Here $\frac{\partial}{\partial U}$ is the row of elements $\frac{\partial}{\partial u}, \frac{\partial}{\partial u^{\prime}}, \ldots$ and $d U$ is the column of elements $d u, d u^{\prime}, d u^{\prime \prime}, \ldots$.

Let us introduce the infinite-dimensional unit matrix E and the shift matrix C as follows:

$$
E=\left(\begin{array}{cccc}
1 & 0 & 0 & \cdot \\
0 & 1 & 0 & \cdot \\
0 & 0 & 1 & \cdot \\
. & . & . & . \\
. & .
\end{array}\right), \quad C=\left(\begin{array}{cccc}
0 & 1 & 0 & . \\
0 & 0 & 1 & . \\
0 & 0 & 0 & \cdot \\
. & . & . & . \\
. & .
\end{array}\right)
$$

and define in $J_{1,1}$ the total differentiation operator by formula:

$$
\begin{equation*}
D=\frac{\partial}{\partial t}+\frac{\partial}{\partial U} U^{\prime}, \quad \text { where } \quad U^{\prime}=C U \tag{3}
\end{equation*}
$$

Proposition 1. The operator D is a linear vector field in the jet space $J_{1,1}$ and its flow is determined by exponential law (see [5]),

$$
\begin{equation*}
U^{\prime}=C U \quad \Rightarrow \quad U_{t}=e^{C t} U \tag{4}
\end{equation*}
$$

The curves $\left(t, U_{t}\right)$ are the trajectories of D.

Proposition 2. If the operator $\frac{\partial}{\partial t}$ in the frame $\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial U}\right)$ is replaced by D then the differentials $d U$ in the coframe $(d t, d U)$ have to be replaced by Cartan forms

$$
\begin{equation*}
\omega=d U-U^{\prime} d t \tag{5}
\end{equation*}
$$

The new basis in the matrix form

$$
\left(\begin{array}{cc}
D & \frac{\partial}{\partial U}
\end{array}\right)=\left(\begin{array}{cc}
\frac{\partial}{\partial t} & \frac{\partial}{\partial U}
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
U^{\prime} & E
\end{array}\right), \quad\binom{d t}{\omega}=\left(\begin{array}{cc}
1 & 0 \\
-U^{\prime} & E
\end{array}\right) \cdot\binom{d t}{d U} .
$$

is called adapted basis in $J_{1,1}$. The term "adapted basis" proceeds from the theory of connections (see [4, p. 23]).
Proposition 3. The derivation formulae valid for the adapted basis (vertical part):

$$
\begin{equation*}
\left(\frac{\partial}{\partial U}\right)^{\prime}=-\frac{\partial}{\partial U} C, \quad \omega^{\prime}=C \omega \tag{6}
\end{equation*}
$$

The stroke means Lie derivative with respect to D. The frame $\frac{\partial}{\partial U}$ and the coframe ω are transported by the flow of D according to the law (4):

$$
\begin{aligned}
& \left(\frac{\partial}{\partial U}\right)^{\prime}=-\frac{\partial}{\partial U} C \quad \Rightarrow \quad\left(\frac{\partial}{\partial U}\right)_{t}=\frac{\partial}{\partial U} e^{-C t} \\
& \omega^{\prime}=C \omega \quad \Rightarrow \quad \omega_{t}=e^{C t} \omega
\end{aligned}
$$

Proposition 4. The quantities

$$
\begin{equation*}
I=e^{-C t} U \tag{7}
\end{equation*}
$$

are the invariants of D because $I^{\prime}=e^{-C t}\left(U^{\prime}-C U\right)=0$. Replacing U by I in the fibers of $J_{1,1}$ we have the invariant basis:

$$
\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial I} ; d t, d I\right) .
$$

The exponential $e^{-C t}$ is integrating matrix for Cartan forms ω and the operators $\frac{\partial}{\partial I}$ are infinitesimal symmetries of D (infinitesimals after [1]) in the following sense:

$$
\begin{equation*}
d I=e^{-C t} \omega, \quad \frac{\partial}{\partial I}=\frac{\partial}{\partial U} e^{C t} \tag{8}
\end{equation*}
$$

Infinitesimal symmetries of D are called Lie vector fields in $J_{1,1}$.
Proposition 5. A vector field P written in three frames of $J_{1,1}$, natural, adapted and invariant as follows

$$
\begin{equation*}
P=\frac{\partial}{\partial t} \xi+\frac{\partial}{\partial U} \lambda=D \xi+\frac{\partial}{\partial U} \mu=\frac{\partial}{\partial t} \xi+\frac{\partial}{\partial I} \nu \tag{9}
\end{equation*}
$$

has for components the entities

$$
\begin{equation*}
\xi=P t, \quad \lambda=P U, \quad \mu=\omega(P), \quad \nu=P I \tag{10}
\end{equation*}
$$

with relations

$$
\begin{equation*}
\nu=e^{-C t} \mu, \quad \mu=\lambda-U^{\prime} \xi . \tag{11}
\end{equation*}
$$

The field P is a Lie vector field if and only if one of equivalent conditions is satisfied:

$$
\begin{equation*}
\nu^{\prime}=0, \quad \mu^{\prime}=C \mu, \quad \lambda^{\prime}=C \lambda+U^{\prime} \xi^{\prime} \tag{12}
\end{equation*}
$$

It is obvious from the Lie derivatives:

$$
\begin{aligned}
& P^{\prime}=D \xi^{\prime}+\frac{\partial}{\partial U}\left(\lambda^{\prime}-C \lambda-U^{\prime} \xi^{\prime}\right)=D \xi^{\prime}+\frac{\partial}{\partial U}\left(\mu^{\prime}-C \mu\right)=D \xi^{\prime}+\frac{\partial}{\partial I} \nu^{\prime} \\
& L_{p} \omega=\left(\lambda^{\prime}-C \lambda-U^{\prime} \xi^{\prime}\right) d t+\left(\frac{\partial \lambda}{\partial U}-U^{\prime} \frac{\partial \xi}{\partial U}\right) \omega=\left(\mu^{\prime}-C \mu\right) d t+\frac{\partial \mu}{\partial U} \omega=e^{C t} \nu^{\prime} d t+\frac{\partial \nu}{\partial I} \omega .
\end{aligned}
$$

The most simple condition $\nu^{\prime}=0$ says that the components ν in invariant frame are invariants of D.

The condition $\mu^{\prime}=C \mu$ means that each entry of column μ is the derivative of preceding entry. Thus all entries of column μ in adapted frame are generated by the first entry $\mu_{0}=f$ (generating function, see [1, p. 454]) by means of differentiation:

$$
\mu_{k}=f^{(k)}=D^{k} f, \quad k=0,1,2, \ldots
$$

There is an obvious analogy between two equations $I=e^{-C t} U$ and $v=e^{-C t} \mu$.
The most complicated condition $\lambda^{\prime}=C \lambda+U^{\prime} \xi^{\prime}$ is principal for the calculation of symmetries in natural basis (see [1, p. 244], [2, p. 110], [3, p. 55]).
Remark 1. In $J_{1,1}$ the invariants $I=e^{-C t} U$ are described as follows:

$$
I_{k}=\sum_{\ell=0}^{\infty} u^{(k+\ell)} \frac{(-t)^{\ell}}{\ell!}, \quad k=0,1,2, \ldots
$$

The operators $\frac{\partial}{\partial I}$ are basic Lie vector fields with generating functions $1, t, \frac{t^{2}}{2}, \ldots$ respectively, that is

$$
\begin{aligned}
\frac{\partial}{\partial I_{0}} & =\frac{\partial}{\partial u}, \\
\frac{\partial}{\partial I_{1}} & =t \frac{\partial}{\partial u}+\frac{\partial}{\partial u^{\prime}}, \\
\frac{\partial}{\partial I_{2}} & =\frac{t^{2}}{2} \frac{\partial}{\partial u}+t \frac{\partial}{\partial u^{\prime}}+\frac{\partial}{\partial u^{\prime \prime}}
\end{aligned}
$$

Remark 2. In $J_{n, m}$ instead of D we have a system of n operators $D_{i}, i=1,2, \ldots, n$, and instead of 1 -dimensional trajectories we have n-dimensional orbits of the additive group \mathbb{R}^{n}. For example, in the space $J_{2,1}$ there are the 2-dimensional time $t=\left(t_{1}, t_{2}\right)$ and two operators

$$
\begin{aligned}
D_{1} & =\frac{\partial}{\partial t_{1}}+u_{1} \frac{\partial}{\partial u}+u_{11} \frac{\partial}{\partial u_{1}}+u_{12} \frac{\partial}{\partial u_{2}}+\cdots, \\
D_{2} & =\frac{\partial}{\partial t_{2}}+u_{2} \frac{\partial}{\partial u}+u_{12} \frac{\partial}{\partial u_{1}}+u_{22} \frac{\partial}{\partial u_{2}}+\cdots .
\end{aligned}
$$

Herewith 2-dimensional orbits of \mathbb{R}^{2} are determined by the series

$$
u_{t}=u+u_{1} t_{1}+u_{2} t_{2}+\frac{1}{2}\left[u_{11}\left(t_{1}\right)^{2}+2 u_{12} t_{1} t_{2}+u_{22}\left(t_{2}\right)^{2}\right]+\cdots
$$

and its partial derivatives of all orders with respect to t_{1} and t_{2}.
Remark 3. In $J_{2,1}$ the Lie field P with the generating function f can be represented in adapted and natural basis as follows:

$$
P=\xi^{1} D_{1}+\xi^{2} D_{2}+f \frac{\partial}{\partial u}+f_{1} \frac{\partial}{\partial u_{1}}+f_{2} \frac{\partial}{\partial u_{2}}+\cdots
$$

$$
\begin{aligned}
= & \xi^{1} \frac{\partial}{\partial t_{1}}+\xi^{2} \frac{\partial}{\partial t_{2}}+\left(f+u_{1} \xi^{1}+u_{2} \xi^{2}\right) \frac{\partial}{\partial u}+\left(f_{1}+u_{11} \xi^{1}+u_{12} \xi^{2}\right) \frac{\partial}{\partial u_{1}} \\
& +\left(f_{2}+u_{12} \xi^{1}+u_{22} \xi^{2}\right) \frac{\partial}{\partial u_{2}}+\cdots,
\end{aligned}
$$

where $f_{i}=D_{i} f, i=1,2$. The components $\lambda_{k}=f_{k}+u_{k i} \xi^{i}, k=0,1,2, \ldots$ are consistent with the relation $\lambda=\mu+U^{\prime} \xi$.

Theorem 1. Any smooth vector field X without singularities on a manifold M can be connected with the total differentiation operator D in the jet space $J_{1,1}$, i.e. there exists a smooth map $\varphi: M \longrightarrow J_{1,1}$ such that the vector field X is φ-connected with the operator D.

Proof. Let s be the canonical parameter of the vector field X, herewith $X s=1$. Take a smooth function f and calculate its derivatives with respect to $X, f^{(k)}=X^{k} f, k=1,2, \ldots$ Let F be the infinite column of elements $f, f^{\prime}, f^{\prime \prime}, \ldots$ and let us define the mapping φ by the relations

$$
\begin{equation*}
t \circ \varphi=s, \quad U \circ \varphi=F \text {. } \tag{13}
\end{equation*}
$$

At some step n we get the conditions

$$
\begin{equation*}
\Theta=d f \wedge d f^{\prime} \wedge d f^{\prime \prime} \wedge \cdots \wedge d f^{(n-1)} \neq 0 \quad \text { and } \quad \Theta \wedge d f^{(n)}=0 \tag{14}
\end{equation*}
$$

There are two possible cases: a) $n=\operatorname{dim} M$, or b) $n<\operatorname{dim} M$.
Case a) $n=\operatorname{dim} M$. Let the functions $f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(n-1)}$ be the coordinates on M and let us represent the field X as follows:

$$
X=f^{\prime} \frac{\partial}{\partial f}+f^{\prime \prime} \frac{\partial}{\partial f^{\prime}}+\cdots+f^{(n)} \frac{\partial}{\partial f^{(n-1)}}
$$

The Jacobian matrix of φ relate the components of X to the components of D (the subscripts mean the partial derivatives):

$$
\left(\begin{array}{ccc}
s_{1} & \cdots & s_{n} \\
1 & \cdots & 0 \\
\cdots & \cdots & \cdots \\
0 & \cdots & 1 \\
f_{1}^{(n)} & \cdots & f_{n}^{(n)} \\
\cdots & \cdots & \cdots
\end{array}\right) \cdot\left(\begin{array}{c}
f^{\prime} \\
\cdots \\
f^{(n)}
\end{array}\right)=\left(\begin{array}{c}
s^{\prime} \\
f^{\prime} \\
\cdots \\
f^{(n)} \\
f^{(n+1)} \\
\cdots
\end{array}\right)=\left(\begin{array}{c}
1 \\
u^{\prime} \\
\cdots \\
u^{(n)} \\
u^{(n+1)} \\
\cdots
\end{array}\right) \circ \varphi .
$$

The rank of the Jacobian matrix is equal to n and φ is an immersion of M into $J_{1,1}$. The triple (X, s, F) on the manifold M is φ-connected with the triple $\left(D, t, U\right.$) in the jet space $J_{1,1}$.

Case b) $n<N=\operatorname{dim} M$. It follows from $\Theta \wedge d f^{(n)}=0$ that $d f^{(n)}$ is a linear combination of $d f, d f^{\prime}, d f^{\prime \prime}, \ldots, d f^{(n-1)}$,

$$
d f^{(n)}=\sum_{i=1}^{n} \alpha_{i} d f^{(n-i)} \quad \text { and } \quad L_{X} \Theta=\alpha_{1} \Theta .
$$

The functions $f, f^{\prime}, f^{\prime \prime}, \ldots, f^{(n-1)}$ determine a submersion $\pi: M \longrightarrow W$. The vector field X transports the fibers of π into the fibers of the same bundle and because of this the field X can be projected on the n-dimensional manifold W. In the coordinates $v^{(i)}$,

$$
v^{(i)} \circ \pi=f^{(i)}, \quad i=0,1,2, \ldots, n-1,
$$

the projection of X is a vector field

$$
T \pi X=v^{\prime} \frac{\partial}{\partial v}+v^{\prime \prime} \frac{\partial}{\partial v^{\prime}}+\cdots+v^{(n-1)} \frac{\partial}{\partial v^{(n-2)}}+f^{(n)} \frac{\partial}{\partial v^{(n-1)}}
$$

which can be connected by a map $\tilde{\varphi}: W \longrightarrow J_{1,1}$ with the operator D. Then the vector field X is φ-connected with D, where $\varphi=\tilde{\varphi} \circ \pi$.

General case. How to make the correspondence between a system of n vector fields Y_{i} on a manifold M with the operators of total differentiation D_{i} in the jet space $J_{n, m}$? Let u^{α} be the coordinates on M, u^{i} the canonical parameters of $Y_{i}, Y_{i} u^{j}=\delta_{i}^{j}$, and y_{i}^{α} the natural components of the fields Y_{i}. The operators

$$
X_{i}=\frac{\partial}{\partial u^{i}}+Y_{i}=\frac{\partial}{\partial u^{i}}+y_{i}^{\alpha} \frac{\partial}{\partial u^{\alpha}}
$$

determine a n-dimensional distribution in the "space-time" $R^{n} \times M$ with the coordinates $\left(u^{i}, u^{\alpha}\right)$, $i=1,2, \ldots, n ; \alpha=n+1, \ldots, n+m ; m=\operatorname{dim} M$. This is a particular case of connection in the fiber space, see [4], where the operators

$$
\begin{equation*}
X_{i}=\frac{\partial}{\partial u^{i}}+\Gamma_{i}^{\alpha} \frac{\partial}{\partial u^{\alpha}} \tag{15}
\end{equation*}
$$

form in the coordinates $\left(u^{i}, u^{\alpha}\right)$ an adapted frame of the horizontal distribution Δ_{h}, with the components

$$
\Gamma_{i}^{\alpha}=\Gamma_{i}^{\alpha}\left(u^{j}, u^{\beta}\right) .
$$

In our case we have $\Gamma_{i}^{\alpha}=y_{i}^{\alpha}\left(u^{j}\right)$. Let us immerse the operators X_{i} in the space $J_{n, m}$ with the help of the map $\varphi: M \longrightarrow J_{n, m}$ supposing

$$
\begin{align*}
& t^{i} \circ \varphi=u^{i}, \quad u^{\alpha} \circ \varphi=u^{\alpha}, \quad u_{i}^{\alpha} \circ \varphi=\Gamma_{i}^{\alpha}, \\
& u_{i j}^{\alpha} \circ \varphi=X_{(i} \Gamma_{j)}^{\alpha}, \quad u_{i j k}^{\alpha} \circ \varphi=X_{(i} X_{j} \Gamma_{k)}^{\alpha}, \quad \ldots . \tag{16}
\end{align*}
$$

The operators X_{i} and the vector fields Y_{i} are φ-connected with the operators D_{i}.
As corollaries we have the next Propositions.
Proposition 6. If the vector field X is φ-connected with the operator D then for any function I in $J_{1,1}$ the derivatives $X(I \circ \varphi)$ and $D I$ are φ-connected, i.e. $X(I \circ \varphi)=(D I) \circ \varphi$. From this it follows that $D I=0 \Longrightarrow X(I \circ \varphi)=0$ and all the invariants of D can be transported on the manifold M in the invariants of the vector field X. In particular the invariants $I=e^{-C t} U$ are transported from $J_{1,1}$ on M in the invariants $I \circ \varphi=e^{-C s} F$.

Proposition 7. If the vector field X is φ-connected with the operator D then all the covariant tensors can be transported from $J_{1,1}$ on the manifold M. For example, the Cartan forms $\omega=$ $d U-U^{\prime} d t$ can be transported in the forms $\omega \circ T \varphi=d F-F^{\prime} d t$, where $F^{\prime}=X F$. The sequence of Lie derivatives with respect to D (Cartan forms)

$$
\omega_{0}=d u-u^{\prime} d t, \quad \omega_{0}^{\prime}=d u^{\prime}-u^{\prime \prime} d t, \quad \omega_{0}^{\prime \prime}=d u^{\prime \prime}-u^{\prime \prime} d t, \quad \ldots
$$

induces the sequence of Lie derivatives with respect to X :

$$
\omega_{0} \circ T \varphi=d f-f^{\prime} d s, \quad \omega_{0}^{\prime} \circ T \varphi=d f^{\prime}-f^{\prime \prime} d s, \quad \omega_{0}^{\prime \prime} \circ T \varphi=d f^{\prime \prime}-f^{\prime \prime \prime} d s, \quad \ldots
$$

Proposition 8. In the general case (16) the Cartan forms in $J_{n, m}$

$$
\omega^{\alpha}=d u^{\alpha}-u^{\alpha} d t^{i}, \quad \omega_{i}^{\alpha}=d u_{i}^{\alpha}-u_{i j}^{\alpha} d t^{j}, \quad \ldots
$$

induce on the manifold $\mathbb{R}^{n} \times M$ the sequence of 1 -forms

$$
\theta^{\alpha}=\omega^{\alpha} \circ T \varphi=d u^{\alpha}-\Gamma_{i}^{\alpha} d u^{i}, \quad \theta_{i}^{\alpha}=\omega_{i}^{\alpha} \circ T \varphi=d \Gamma_{i}^{\alpha}-X_{(i} \Gamma_{j)}^{\alpha} d u^{j}, \quad \ldots .
$$

The horizontal distribution Δ_{h} is the annulator of the forms θ^{α}, i.e. $\theta^{\alpha}\left(X_{i}\right)=0$. The forms θ_{i}^{α} imply the appearance of two important objects:

$$
\begin{array}{ll}
K_{i j}^{\alpha}=X_{[i} \Gamma_{j]}^{\alpha}, & \text { object of curvature }, \\
\Gamma_{i \beta}^{\alpha}=-\partial_{\beta} \Gamma_{i}^{\alpha}, & \text { object of connection. }
\end{array}
$$

Namely, because $d \Gamma_{i}^{\alpha}=X_{j} \Gamma_{i}^{\alpha} d u^{j}+\partial_{\beta} \Gamma_{i}^{\alpha} \theta^{\beta}$ and $X_{j} \Gamma_{i}^{\alpha}=X_{(i} \Gamma_{j)}^{\alpha}-X_{[i} \Gamma_{j]}^{\alpha}$ we have

$$
\theta_{i}^{\alpha}=-K_{i j}^{\alpha} d u^{j}-\Gamma_{i \beta}^{\alpha} \theta^{\beta} .
$$

For the linear connection the quantities Γ_{i}^{α} are linear functions on the fibers: $\Gamma_{i}^{\alpha}=-\Gamma_{i \beta}^{\alpha} u^{\beta}$, and we have $K_{i j}^{\alpha}=-K_{i j \beta}^{\alpha} u^{\beta}$, where $K_{i j \beta}^{\alpha}=\partial_{[i} \Gamma_{j] \beta}^{\alpha}+\Gamma_{[i|\gamma|}^{\alpha} \Gamma_{j \mid \beta}^{\gamma}$, (see [4, p. 26]).

Extending the linear connection onto the tangent bundle $T M \longrightarrow M$ we get the affine connection on the manifold M in the classical sense.
Proposition 9. The vertical distribution Δ_{v} is integrable because $\Delta_{v}=\operatorname{Ker} T \pi$ and the vector fields (15) are infinitesimals of Δ_{v}. For any coframe θ^{i} of Δ_{v} there exists an integrating matrix B_{j}^{i} such that $B_{j}^{i} \theta^{j}=d u^{i}$. Then $B_{k}^{i} \theta^{k}(X j)=\delta_{j}^{i}$ is unit matrix and B_{j}^{i} is inverse to the matrix $\theta^{i}\left(X_{j}\right)$.

Let us mention that from (8) we have the same situation $e^{-C t} \omega\left(\frac{\partial}{\partial I}\right)=E$. This generalizes the known property of integrating factor for $n=1$ (see [1, p. 60]).
Proposition 10. The vector field P represented in natural and adapted frames as follows (see [5, p. 286])

$$
P=\xi^{i} \frac{\partial}{\partial u^{i}}+\lambda^{\alpha} \frac{\partial}{\partial u^{\alpha}}=\xi^{i} X_{i}+\mu^{\alpha} \frac{\partial}{\partial u^{\alpha}}, \quad \mu^{\alpha}=\lambda^{\alpha}-\Gamma_{i}^{\alpha} \xi^{i}
$$

is an infinitesimal symmetry of horizontal distribution Δ_{h} if and only if either

$$
\begin{equation*}
X_{i} \lambda^{\alpha}-P \Gamma_{i}^{\alpha}-\Gamma_{j}^{\alpha} X_{i} \xi^{j}=0 \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
X_{i} \mu^{\alpha}+\Gamma_{i \beta}^{\alpha} \mu^{\beta}+2 K_{i j}^{\alpha} \xi^{j}=0 . \tag{18}
\end{equation*}
$$

For the case

$$
\Gamma_{i}^{\alpha}=-\Gamma_{i \beta}^{\alpha} u^{\beta}, \quad \mu^{\alpha}=\mu_{\beta}^{\alpha} u^{\beta}, \quad \lambda^{\alpha}=\lambda_{\beta}^{\alpha} u^{\beta}, \quad \mu_{\beta}^{\alpha}=\lambda_{\beta}^{\alpha}+\Gamma_{i \beta}^{\alpha} \xi^{i}
$$

the conditions (17) and (18) are equivalent to

$$
\begin{align*}
& \partial_{i} \lambda_{\beta}^{\alpha}-\lambda_{\gamma}^{\alpha} \Gamma_{i \beta}^{\gamma}+\Gamma_{i \gamma}^{\alpha} \lambda_{\beta}^{\gamma}+\partial_{i} \Gamma_{j \beta}^{\alpha} \xi^{j}+\Gamma_{j \beta}^{\alpha} X_{i} \xi^{j}=0, \tag{19}\\
& \partial_{i} \mu_{\beta}^{\alpha}-\mu_{\gamma}^{\alpha} \Gamma_{i \beta}^{\gamma}+\Gamma_{i \gamma}^{\alpha} \mu_{\beta}^{\gamma}-2 K_{i j \beta}^{\alpha} \xi^{j}=0 . \tag{20}
\end{align*}
$$

On the tangent bundle $T M \longrightarrow M$ we have the correspondence

$$
\left(u^{i}, u^{\alpha}\right) \sim\left(u^{i}, d u^{i}\right), \quad\left(\xi^{i}, \lambda^{\alpha}\right) \sim\left(\xi^{i}, d \xi^{i}\right), \quad \lambda_{\beta}^{\alpha} \sim \frac{\partial \xi^{i}}{\partial u^{j}}, \quad \mu^{\alpha} \sim \frac{\partial \xi^{i}}{\partial u^{j}}+\Gamma_{k j}^{i} \xi^{k}
$$

and the conditions (19) and (20) define P as an affine collineation (infinitesimal movement in the space of affine connection or Killing's vector field in Riemannian geometry), see [6, p. 37, formulae (2.30) and (2.31)].

Remark 4. For ODE $y^{\prime}+p(x) y+q(x)=0$ we have $\omega=(p y+q) d x+d y$ and the condition (18) gives $\mu=e^{-\int p d x}$. The form

$$
\frac{\omega}{\mu}=d\left(\frac{y}{\mu}\right)+\frac{q}{\mu} d x
$$

is exact and determines the first integral (see [1, p. 160])

$$
\frac{y}{\mu}+\int \frac{q}{\mu} d x
$$

Acknowledgements

The paper had supported by ETF grants nr. 4420 and 5281.
[1] Cantwell B.J., Introduction to symmetry analysis, Cambridge University Press, 2002.
[2] Olver P.J., Applications of Lie groups to differential equations, Springer, 1993.
[3] Ovsiannikov L.V., Group analysis of differential equations, New York, Academic Press, 1982.
[4] Rahula M., New problems in differential geometry, WSP, 1993.
[5] Rahula M., Exponential law in the Lie-Cartan calculus, Rendiconti del Seminario Matematico di Messina, Atti del Congresso Internazionale in onore di Pasquale Calapso, Messina, 1998, 264-291.
[6] Yano K. and Bochner S., Curvature and Betti numbers, Princeton University Press, 1953.

