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Universal Structure of Jet Space
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Operators of total differentiation D, Cartan forms ω and infinitesimal symmetries P con-
stitute the structure of infinite jet space Jn,m. We describe these notions compactly for the
space J1,1 though reserve the possibility to pass with the help of multi-indices to general
case Jn,m. Our aim is to show the universality of this structure. Every time when we diffe-
rentiate a function f with respect to the vector field X on a manifold M we can determine
a map ϕ : M → J1,1 and connect the triple (X, s, F ) with the triple (D, t, U) in J1,1, where
F is the set of derivatives f (k) = Xkf , k = 0, 1, 2, . . .; s is canonical parameter of X,U is
the set of fiber coordinates u(k) = Dku, k = 0, 1, 2, . . ., and t is canonical parameter of D.
Then all the invariants and symmetries of D as well as all the covariant tensors including
Cartan forms can be transformed from J1,1 onto the manifold M . The structure is universal
as final object in the category of triples (X, s, F ).

Let f : Vn → Vm be a smooth mapping. The infinite jet of the map f is determined by the
coordinates ti, uα of the points t ∈ Vn and u = f(t) ∈ Vm, and by the values of partial derivatives
at t:

uα
i =

∂fα

∂ui
(t), uij =

∂2fα

∂ui∂uj
(t), . . . ,

i, j = 1, 2, . . . , n = dimVn, α = 1, 2, . . . , m = dim Vm.

The set of the jets of f is called jet space Jm,n where the quantities

ti, uα, uα
i , uα

ij , . . . (1)

are jet coordinates.
In the space J1,1 we have the coordinates

t, u, u′, u′′, . . . (2)

or briefly (t, U) where U is the column of elements u, u′, u′′, . . . .
In J1,1 one has the natural basis

(
∂
∂t ,

∂
∂U ; dt, dU

)
associated with the coordinates (2). Here

∂
∂U is the row of elements ∂

∂u , ∂
∂u′ , . . . and dU is the column of elements du, du′, du′′, . . . .

Let us introduce the infinite-dimensional unit matrix E and the shift matrix C as follows:

E =




1 0 0 ·
0 1 0 ·
0 0 1 ·
· · · · · ·


 , C =




0 1 0 ·
0 0 1 ·
0 0 0 ·
· · · · · ·




and define in J1,1 the total differentiation operator by formula:

D =
∂

∂t
+

∂

∂U
U ′, where U ′ = CU. (3)

Proposition 1. The operator D is a linear vector field in the jet space J1,1 and its flow is
determined by exponential law (see [5]),

U ′ = CU ⇒ Ut = eCtU. (4)

The curves (t, Ut) are the trajectories of D.



Universal Structure of Jet Space 225

Proposition 2. If the operator ∂
∂t in the frame

(
∂
∂t ,

∂
∂U

)
is replaced by D then the differentials

dU in the coframe (dt, dU) have to be replaced by Cartan forms

ω = dU − U ′dt. (5)

The new basis in the matrix form

(
D ∂

∂U

)
=

(
∂
∂t

∂
∂U

) ·
(

1 0
U ′ E

)
,

(
dt
ω

)
=

(
1 0

−U ′ E

)
·
(

dt
dU

)
.

is called adapted basis in J1,1. The term “adapted basis” proceeds from the theory of connections
(see [4, p. 23]).

Proposition 3. The derivation formulae valid for the adapted basis (vertical part):
(

∂

∂U

)′
= − ∂

∂U
C, ω′ = Cω. (6)

The stroke means Lie derivative with respect to D. The frame ∂
∂U and the coframe ω are

transported by the flow of D according to the law (4):
(

∂

∂U

)′
= − ∂

∂U
C ⇒

(
∂

∂U

)
t

=
∂

∂U
e−Ct,

ω′ = Cω ⇒ ωt = eCtω.

Proposition 4. The quantities

I = e−CtU (7)

are the invariants of D because I ′ = e−Ct(U ′ − CU) = 0. Replacing U by I in the fibers of J1,1

we have the invariant basis:(
∂

∂t
,

∂

∂I
; dt, dI

)
.

The exponential e−Ct is integrating matrix for Cartan forms ω and the operators ∂
∂I are

infinitesimal symmetries of D (infinitesimals after [1]) in the following sense:

dI = e−Ctω,
∂

∂I
=

∂

∂U
eCt. (8)

Infinitesimal symmetries of D are called Lie vector fields in J1,1.

Proposition 5. A vector field P written in three frames of J1,1, natural, adapted and invariant
as follows

P =
∂

∂t
ξ +

∂

∂U
λ = Dξ +

∂

∂U
µ =

∂

∂t
ξ +

∂

∂I
ν (9)

has for components the entities

ξ = Pt, λ = PU, µ = ω(P ), ν = PI, (10)

with relations

ν = e−Ctµ, µ = λ − U ′ξ. (11)

The field P is a Lie vector field if and only if one of equivalent conditions is satisfied:

ν ′ = 0, µ′ = Cµ, λ′ = Cλ + U ′ξ′. (12)
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It is obvious from the Lie derivatives:

P ′ = Dξ′ +
∂

∂U
(λ′ − Cλ − U ′ξ′) = Dξ′ +

∂

∂U
(µ′ − Cµ) = Dξ′ +

∂

∂I
ν ′,

Lpω = (λ′ − Cλ − U ′ξ′)dt +
(

∂λ

∂U
− U ′ ∂ξ

∂U

)
ω = (µ′ − Cµ)dt +

∂µ

∂U
ω = eCtν ′dt +

∂ν

∂I
ω.

The most simple condition ν ′ = 0 says that the components ν in invariant frame are invariants
of D.

The condition µ′ = Cµ means that each entry of column µ is the derivative of preceding
entry. Thus all entries of column µ in adapted frame are generated by the first entry µ0 = f
(generating function, see [1, p. 454]) by means of differentiation:

µk = f (k) = Dkf, k = 0, 1, 2, . . . .

There is an obvious analogy between two equations I = e−CtU and v = e−Ctµ.
The most complicated condition λ′ = Cλ+U ′ξ′ is principal for the calculation of symmetries

in natural basis (see [1, p. 244], [2, p. 110], [3, p. 55]).

Remark 1. In J1,1 the invariants I = e−CtU are described as follows:

Ik =
∞∑

�=0

u(k+�) (−t)�

�!
, k = 0, 1, 2, . . . .

The operators ∂
∂I are basic Lie vector fields with generating functions 1, t, t2

2 , . . . respectively,
that is

∂

∂I0
=

∂

∂u
,

∂

∂I1
= t

∂

∂u
+

∂

∂u′ ,

∂

∂I2
=

t2

2
∂

∂u
+ t

∂

∂u′ +
∂

∂u′′

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
Remark 2. In Jn,m instead of D we have a system of n operators Di, i = 1, 2, . . . , n, and
instead of 1-dimensional trajectories we have n-dimensional orbits of the additive group R

n. For
example, in the space J2,1 there are the 2-dimensional time t = (t1, t2) and two operators

D1 =
∂

∂t1
+ u1

∂

∂u
+ u11

∂

∂u1
+ u12

∂

∂u2
+ · · · ,

D2 =
∂

∂t2
+ u2

∂

∂u
+ u12

∂

∂u1
+ u22

∂

∂u2
+ · · · .

Herewith 2-dimensional orbits of R
2 are determined by the series

ut = u + u1t1 + u2t2 +
1
2

[
u11(t1)2 + 2u12t1t2 + u22(t2)2

]
+ · · ·

and its partial derivatives of all orders with respect to t1 and t2.

Remark 3. In J2,1 the Lie field P with the generating function f can be represented in adapted
and natural basis as follows:

P = ξ1D1 + ξ2D2 + f
∂

∂u
+ f1

∂

∂u1
+ f2

∂

∂u2
+ · · ·
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= ξ1 ∂

∂t1
+ ξ2 ∂

∂t2
+

(
f + u1ξ

1 + u2ξ
2
) ∂

∂u
+

(
f1 + u11ξ

1 + u12ξ
2
) ∂

∂u1

+
(
f2 + u12ξ

1 + u22ξ
2
) ∂

∂u2
+ · · · ,

where fi = Dif , i = 1, 2. The components λk = fk + ukiξ
i, k = 0, 1, 2, . . . are consistent with

the relation λ = µ + U ′ξ.

Theorem 1. Any smooth vector field X without singularities on a manifold M can be connected
with the total differentiation operator D in the jet space J1,1, i.e. there exists a smooth map
ϕ : M −→ J1,1 such that the vector field X is ϕ-connected with the operator D.

Proof. Let s be the canonical parameter of the vector field X, herewith Xs = 1. Take a smooth
function f and calculate its derivatives with respect to X, f (k) = Xkf , k = 1, 2, . . . . Let F be
the infinite column of elements f, f ′, f ′′, . . . and let us define the mapping ϕ by the relations

t ◦ ϕ = s, U ◦ ϕ = F. (13)

At some step n we get the conditions

Θ = df ∧ df ′ ∧ df ′′ ∧ · · · ∧ df (n−1) �= 0 and Θ ∧ df (n) = 0. (14)

There are two possible cases: a) n = dim M , or b) n < dim M .
Case a) n = dimM . Let the functions f, f ′, f ′′, . . . , f (n−1) be the coordinates on M and let

us represent the field X as follows:

X = f ′ ∂

∂f
+ f ′′ ∂

∂f ′ + · · · + f (n) ∂

∂f (n−1)
.

The Jacobian matrix of ϕ relate the components of X to the components of D (the subscripts
mean the partial derivatives):




s1 · · · sn

1 · · · 0
· · · · · · · · ·
0 · · · 1

f
(n)
1 · · · f

(n)
n

· · · · · · · · ·




·

 f ′

· · ·
f (n)


 =




s′

f ′

· · ·
f (n)

f (n+1)

· · ·




=




1
u′

· · ·
u(n)

u(n+1)

· · ·




◦ ϕ.

The rank of the Jacobian matrix is equal to n and ϕ is an immersion of M into J1,1. The triple
(X, s, F ) on the manifold M is ϕ-connected with the triple (D, t, U) in the jet space J1,1.

Case b) n < N = dimM . It follows from Θ∧ df (n) = 0 that df (n) is a linear combination of
df, df ′, df ′′, . . . , df (n−1),

df (n) =
n∑

i=1

αidf
(n−i) and LXΘ = α1Θ.

The functions f, f ′, f ′′, . . . , f (n−1) determine a submersion π : M −→ W . The vector field X
transports the fibers of π into the fibers of the same bundle and because of this the field X can
be projected on the n-dimensional manifold W . In the coordinates v(i),

v(i) ◦ π = f (i), i = 0, 1, 2, . . . , n − 1,
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the projection of X is a vector field

TπX = v′
∂

∂v
+ v′′

∂

∂v′
+ · · · + v(n−1) ∂

∂v(n−2)
+ f (n) ∂

∂v(n−1)

which can be connected by a map ϕ̃ : W −→ J1,1 with the operator D. Then the vector field X
is ϕ-connected with D, where ϕ = ϕ̃ ◦ π.

General case. How to make the correspondence between a system of n vector fields Yi on
a manifold M with the operators of total differentiation Di in the jet space Jn,m? Let uα be the
coordinates on M , ui the canonical parameters of Yi, Yiu

j = δj
i , and yα

i the natural components
of the fields Yi. The operators

Xi =
∂

∂ui
+ Yi =

∂

∂ui
+ yα

i

∂

∂uα

determine a n-dimensional distribution in the “space-time” Rn×M with the coordinates (ui, uα),
i = 1, 2, . . . , n; α = n + 1, . . . , n + m; m = dimM . This is a particular case of connection in the
fiber space, see [4], where the operators

Xi =
∂

∂ui
+ Γα

i

∂

∂uα
(15)

form in the coordinates (ui, uα) an adapted frame of the horizontal distribution ∆h, with the
components

Γα
i = Γα

i (uj , uβ).

In our case we have Γα
i = yα

i (uj). Let us immerse the operators Xi in the space Jn,m with the
help of the map ϕ : M −→ Jn,m supposing

ti ◦ ϕ = ui, uα ◦ ϕ = uα, uα
i ◦ ϕ = Γα

i ,

uα
ij ◦ ϕ = X(iΓ

α
j), uα

ijk ◦ ϕ = X(iXjΓα
k), . . . . (16)

The operators Xi and the vector fields Yi are ϕ-connected with the operators Di. �

As corollaries we have the next Propositions.

Proposition 6. If the vector field X is ϕ-connected with the operator D then for any function I
in J1,1 the derivatives X(I ◦ ϕ) and DI are ϕ-connected, i.e. X(I ◦ ϕ) = (DI) ◦ ϕ. From this
it follows that DI = 0 =⇒ X(I ◦ ϕ) = 0 and all the invariants of D can be transported on the
manifold M in the invariants of the vector field X. In particular the invariants I = e−CtU are
transported from J1,1 on M in the invariants I ◦ ϕ = e−CsF .

Proposition 7. If the vector field X is ϕ-connected with the operator D then all the covariant
tensors can be transported from J1,1 on the manifold M . For example, the Cartan forms ω =
dU − U ′dt can be transported in the forms ω ◦ Tϕ = dF − F ′dt, where F ′ = XF . The sequence
of Lie derivatives with respect to D (Cartan forms)

ω0 = du − u′dt, ω′
0 = du′ − u′′dt, ω′′

0 = du′′ − u′′dt, . . .

induces the sequence of Lie derivatives with respect to X:

ω0 ◦ Tϕ = df − f ′ds, ω′
0 ◦ Tϕ = df ′ − f ′′ds, ω′′

0 ◦ Tϕ = df ′′ − f ′′′ds, . . . .
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Proposition 8. In the general case (16) the Cartan forms in Jn,m

ωα = duα − uαdti, ωα
i = duα

i − uα
ijdtj , . . .

induce on the manifold R
n × M the sequence of 1-forms

θα = ωα ◦ Tϕ = duα − Γα
i dui, θα

i = ωα
i ◦ Tϕ = dΓα

i − X(iΓ
α
j)duj , . . . .

The horizontal distribution ∆h is the annulator of the forms θα, i.e. θα(Xi) = 0. The forms θα
i

imply the appearance of two important objects:

Kα
ij = X[iΓ

α
j], object of curvature,

Γα
iβ = −∂βΓα

i , object of connection.

Namely, because dΓα
i = XjΓα

i duj + ∂βΓα
i θβ and XjΓα

i = X(iΓα
j) − X[iΓα

j] we have

θα
i = −Kα

ijduj − Γα
iβθβ .

For the linear connection the quantities Γα
i are linear functions on the fibers: Γα

i = −Γα
iβuβ , and

we have Kα
ij = −Kα

ijβuβ , where Kα
ijβ = ∂[iΓα

j]β + Γα
[i|γ|Γ

γ
j]β , (see [4, p. 26]).

Extending the linear connection onto the tangent bundle TM −→ M we get the affine
connection on the manifold M in the classical sense.

Proposition 9. The vertical distribution ∆v is integrable because ∆v = Ker Tπ and the vector
fields (15) are infinitesimals of ∆v. For any coframe θi of ∆v there exists an integrating mat-
rix Bi

j such that Bi
jθ

j = dui. Then Bi
kθ

k(Xj) = δi
j is unit matrix and Bi

j is inverse to the
matrix θi(Xj).

Let us mention that from (8) we have the same situation e−Ctω( ∂
∂I ) = E. This generalizes

the known property of integrating factor for n = 1 (see [1, p. 60]).

Proposition 10. The vector field P represented in natural and adapted frames as follows (see
[5, p. 286])

P = ξi ∂

∂ui
+ λα ∂

∂uα
= ξiXi + µα ∂

∂uα
, µα = λα − Γα

i ξi,

is an infinitesimal symmetry of horizontal distribution ∆h if and only if either

Xiλ
α − PΓα

i − Γα
j Xiξ

j = 0 (17)

or

Xiµ
α + Γα

iβµβ + 2Kα
ijξ

j = 0. (18)

For the case

Γα
i = −Γα

iβuβ , µα = µα
βuβ , λα = λα

βuβ , µα
β = λα

β + Γα
iβξi

the conditions (17) and (18) are equivalent to

∂iλ
α
β − λα

γ Γγ
iβ + Γα

iγλγ
β + ∂iΓα

jβξj + Γα
jβXiξ

j = 0, (19)

∂iµ
α
β − µα

γ Γγ
iβ + Γα

iγµγ
β − 2Kα

ijβξj = 0. (20)

On the tangent bundle TM −→ M we have the correspondence

(ui, uα) ∼ (ui, dui), (ξi, λα) ∼ (ξi, dξi), λα
β ∼ ∂ξi

∂uj
, µα ∼ ∂ξi

∂uj
+ Γi

kjξ
k

and the conditions (19) and (20) define P as an affine collineation (infinitesimal movement in
the space of affine connection or Killing’s vector field in Riemannian geometry), see [6, p. 37,
formulae (2.30) and (2.31)].
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Remark 4. For ODE y′ + p(x)y + q(x) = 0 we have ω = (py + q)dx+dy and the condition (18)
gives µ = e−

∫
pdx. The form

ω

µ
= d

(
y

µ

)
+

q

µ
dx

is exact and determines the first integral (see [1, p. 160])

y

µ
+

∫
q

µ
dx.
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